skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Wave Model of Sleep Dynamics and an Invariant Relationship between NonREM and REM Sleep
Explaining the complex structure and dynamics of sleep, which consist of alternating and physiologically distinct nonREM and REM sleep episodes, has posed a significant challenge. In this study, we demonstrate that a single wave model concept captures the distinctly different overnight dynamics of the four primary sleep measures—the duration and intensity of nonREM and REM sleep episodes—with high quantitative precision for both regular and extended sleep. The model also accurately predicts how these polysomnographic measures respond to sleep deprivation or abundance. Furthermore, the model passes the ultimate test, as its prediction leads to a novel experimental finding—an invariant relationship between the duration of nonREM episodes and the intensity of REM episodes, the product of which remains constant over consecutive sleep cycles. These results suggest a functional unity between nonREM and REM sleep, establishing a comprehensive and quantitative framework for understanding normal sleep and sleep disorders.  more » « less
Award ID(s):
2116679
PAR ID:
10516864
Author(s) / Creator(s):
;
Publisher / Repository:
mdpi
Date Published:
Journal Name:
Clocks & Sleep
Volume:
5
Issue:
4
ISSN:
2624-5175
Page Range / eLocation ID:
686 to 716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep–wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better – and perhaps more specific – treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people. 
    more » « less
  2. null (Ed.)
    Abstract Study Objectives We determine if young people with narcolepsy type 1 (NT1), narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH) have distinct nocturnal sleep stability phenotypes compared to subjectively sleepy controls. Methods Participants were 5- to 21-year old and drug-naïve or drug free: NT1 (n = 46), NT2 (n = 12), IH (n = 18), and subjectively sleepy controls (n = 48). We compared the following sleep stability measures from polysomnogram recording between each hypersomnolence disorder to subjectively sleepy controls: number of wake and sleep stage bouts, Kaplan–Meier survival curves for wake and sleep stages, and median bout durations. Results Compared to the subjectively sleepy control group, NT1 participants had more bouts of wake and all sleep stages (p ≤ .005) except stage N3. NT1 participants had worse survival of nocturnal wake, stage N2, and rapid eye movement (REM) bouts (p < .005). In the first 8 hours of sleep, NT1 participants had longer stage N1 bouts but shorter REM (all ps < .004). IH participants had a similar number of bouts but better survival of stage N2 bouts (p = .001), and shorter stage N3 bouts in the first 8 hours of sleep (p = .003). In contrast, NT2 participants showed better stage N1 bout survival (p = .006) and longer stage N1 bouts (p = .02). Conclusions NT1, NT2, and IH have unique sleep physiology compared to subjectively sleepy controls, with only NT1 demonstrating clear nocturnal wake and sleep instability. Overall, sleep stability measures may aid in diagnoses and management of these central nervous system disorders of hypersomnolence. 
    more » « less
  3. A large number of human intracranial EEG (iEEG) recordings have been collected for clinical purposes, in institutions all over the world, but the vast majority of these are unaccompanied by EOG and EMG recordings which are required to separate Wake episodes from REM sleep using accepted methods. In order to make full use of this extremely valuable data, an accurate method of classifying sleep from iEEG recordings alone is required. Existing methods of sleep scoring using only iEEG recordings accurately classify all stages of sleep, with the exception that wake (W) and rapid-eye movement (REM) sleep are not well distinguished. A novel multitaper (Wake vs. REM) alpha-rhythm classifier is developed by generalizing K-means clustering for use with multitaper spectral eigencoefficients. The performance of this unsupervised method is assessed on eight subjects exhibiting normal sleep architecture in a hold-out analysis and is compared against a classical power detector. The proposed multitaper classifier correctly identifies 36±6 min of REM in one night of recorded sleep, while incorrectly labeling less than 10% of all labeled 30 s epochs for all but one subject (human rater reliability is estimated to be near 80%), and outperforms the equivalent statistical-power classical test. Hold-out analysis indicates that when using one night’s worth of data, an accurate generalization of the method on new data is likely. For the purpose of studying sleep, the introduced multitaper alpha-rhythm classifier further paves the way to making available a large quantity of otherwise unusable IEEG data. 
    more » « less
  4. The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep. Validation results in comparison with the gold standard (i.e., polysomnography) (n=849) demonstrate that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM), detects sleep apnea (AUROC = 0.88), and measures the patient's Apnea-Hypopnea Index (ICC=0.95; 95% CI = [0.93, 0.97]). Notably, the model exhibits equitable performance across race, sex, and age. Moreover, the model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders. These findings not only hold promise for clinical practice and interventional trials but also underscore the significance of sleep as a fundamental component in understanding and managing various diseases. 
    more » « less
  5. REM sleep is important for the processing of emotional memories, including fear memories. Rhythmic interactions, especially in the theta band, between the medial prefrontal cortex (mPFC) and limbic structures are thought to play an important role, but the ways in which memory processing occurs at a mechanistic and circuits level are largely unknown. To investigate how rhythmic interactions lead to fear extinction during REM sleep, we used a biophysically based model that included the infralimbic cortex (IL), a part of the mPFC with a critical role in suppressing fear memories. Theta frequency (4–12 Hz) inputs to a given cell assembly in IL, representing an emotional memory, resulted in the strengthening of connections from the IL to the amygdala and the weakening of connections from the amygdala to the IL, resulting in the suppression of the activity of fear expression cells for the associated memory. Lower frequency (4 Hz) theta inputs effected these changes over a wider range of input strengths. In contrast, inputs at other frequencies were ineffective at causing these synaptic changes and did not suppress fear memories. Under post-traumatic stress disorder (PTSD) REM sleep conditions, rhythmic activity dissipated, and 4 Hz theta inputs to IL were ineffective, but higher-frequency (10 Hz) theta inputs to IL induced changes similar to those seen with 4 Hz inputs under normal REM sleep conditions, resulting in the suppression of fear expression cells. These results suggest why PTSD patients may repeatedly experience the same emotionally charged dreams and suggest potential neuromodulatory therapies for the amelioration of PTSD symptoms. SIGNIFICANCE STATEMENT Rhythmic interactions in the theta band between the mPFC and limbic structures are thought to play an important role in processing emotional memories, including fear memories, during REM sleep. The infralimbic cortex (IL) in the mPFC is thought to play a critical role in suppressing fear memories. We show that theta inputs to the IL, unlike other frequency inputs, are effective in producing synaptic changes that suppress the activity of fear expression cells associated with a given memory. Under PTSD REM sleep conditions, lower-frequency (4 Hz) theta inputs to the IL do not suppress the activity of fear expression cells associated with the given memory but, surprisingly, 10 Hz inputs do. These results suggest potential neuromodulatory therapies for PTSD. 
    more » « less