skip to main content


Title: The FAST Algorithm for Submodular Maximization
In this paper we describe a new parallel algorithm called Fast Adaptive Sequencing Technique (FAST) for maximizing a monotone submodular function under a cardinality constraint k. This algorithm achieves the optimal 1-1/e approximation guarantee and is orders of magnitude faster than the state-of-the-art on a variety of experiments over real-world data sets. Following recent work by Balkanski & Singer (2018a), there has been a great deal of research on algorithms whose theoretical parallel runtime is exponentially faster than algorithms used for sub- modular maximization over the past 40 years. However, while these new algorithms are fast in terms of asymptotic worst-case guarantees, it is computationally infeasible to use them in practice even on small data sets because the number of rounds and queries they require depend on large constants and high-degree polynomials in terms of precision and confidence. The design principles behind the FAST algorithm we present here are a significant departure from those of recent theoretically fast algorithms. Rather than optimize for asymptotic theoretical guarantees, the design of FAST introduces several new techniques that achieve remarkable practical and theoretical parallel runtimes. The approximation guarantee obtained by FAST is arbitrarily close to 1-1/e, and its asymptotic parallel runtime (adaptivity) is O(log(n) log2(log k)) using O(n log log(k)) total queries. We show that FAST is orders of magnitude faster than any algorithm for submodular maximization we are aware of, including hyper-optimized parallel versions of state-of-the-art serial algorithms, by running experiments on large data sets.  more » « less
Award ID(s):
1647325
NSF-PAR ID:
10220985
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
ICML 2020
ISSN:
2640-3498
Page Range / eLocation ID:
1134-1143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function. 
    more » « less
  2. null (Ed.)
    In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality. 
    more » « less
  3. null (Ed.)
    In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality. 
    more » « less
  4. null (Ed.)
    In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy epsilon, our algorithm achieves a 1/e−epsilon approximation using O(logn*log(1/epsilon)/epsilon^3) parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant epsilon. Previous algorithms achieve worse approximation guarantees using Ω(log^2 n) parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality. 
    more » « less
  5. We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / \varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $\frac{\alpha}{1+\alpha}-\varepsilon$, where $\alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $\frac{1}{2}-\varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of \cite{buchbinder2019constrained}, that achieves the state-of-the-art offline approximation guarantee of $\alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to \cite{feldman2018less}. It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(\frac{\log k + \log (1/\alpha {\varepsilon^2})$ per element. 
    more » « less