skip to main content

Title: Tutorial: Langevin Dynamics methods for aerosol particle trajectory simulations and collision rate constant modeling
The Langevin Dynamics (LD) method (also known in the literature as Brownian Dynamics) is routinely used to simulate aerosol particle trajectories for transport rate constant calculations as well as to understand aerosol particle transport in internal and external fluid flows. This tutorial intends to explain the methodological details of setting up a LD simulation of a population of aerosol particles and to deduce rate constants from an ensemble of classical trajectories. We discuss the applicability and limitations of the translational Langevin equation to model the combined stochastic and deterministic motion of particles in fields of force or fluid flow. The drag force and stochastic “diffusion” force terms that appear in the Langevin equation are discussed elaborately, along with a summary of common forces relevant to aerosol systems (electrostatic, gravity, van der Waals, …); a commonly used first order and a fourth order Runge-Kutta time stepping schemes for linear stochastic ordinary differential equations are presented. A MATLAB® implementation of a LD code for simulating particle settling under gravity using the first order scheme is included for illustration. Scaling analysis of aerosol transport processes and the selection of timestep and domain size for trajectory simulations are demonstrated through two specific aerosol processes: more » particle diffusion charging and coagulation. Fortran® implementations of the first order and fourth order time-stepping schemes are included for simulating the 3D motion of a particle in a periodic domain. Potential applications and caveats to the usage of LD are included as a summary. « less
Authors:
;
Award ID(s):
1903432
Publication Date:
NSF-PAR ID:
10221107
Journal Name:
Journal of aerosol science
Volume:
155
Issue:
June
Page Range or eLocation-ID:
105746
ISSN:
0021-8502
Sponsoring Org:
National Science Foundation
More Like this
  1. The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al. , J. Fluid Mech. , vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS.more »LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $St_{\unicode[STIX]{x1D702}}=10,20,40,80$ and $Re_{\unicode[STIX]{x1D706}}=76,131$ . Here, $St_{\unicode[STIX]{x1D702}}$ is the particle Stokes number based on the Kolmogorov time scale and $Re_{\unicode[STIX]{x1D706}}$  is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $\unicode[STIX]{x1D6FA}(U|r)$ and $\unicode[STIX]{x1D6FA}(U_{r}|r)$ of relative velocity $U$ and of the radial component of relative velocity $U_{r}$ respectively, both PDFs conditioned on separation $r$ . The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs.« less
  2. Particle shape strongly influences the diffusion charging of aerosol particles exposed to bipolar/unipolar ions and accurate modeling is needed to predict the charge distribution of non-spherical particles. A prior particle-ion collision kernel β_i model including Coulombic and image potential interactions for spherical particles is generalized for arbitrary shapes following a scaling approach that uses a continuum and free molecular particle length scale and Langevin dynamics simulations of non-spherical particle-ion collisions for attractive Coulomb-image potential interactions. This extended β_i model for collisions between unlike charged particle-ion (bipolar charging) and like charged particle-ion (unipolar charging) is validated by comparing against published experimental data of bipolar charge distributions for diverse shapes. Comparison to the bipolar charging data for spherical particles shows good agreement in air, argon, and nitrogen, while also demonstrating high accuracy in predicting charge states up to ±6. Comparisons to the data for fractal aggregates reveal that the LD-based β_i model predicts within overall ±30% without any systematic bias. The mean charge on linear chain aggregates and charge fractions on cylindrical particles is found to be in good agreement with the measurements (~±20% overall). The comparison with experimental results supports the use of LD-based diffusion charging models to predict the bipolarmore »and unipolar charge distribution of arbitrary shaped aerosol particles for a wide range of particle size, and gas temperature, pressure. The presented β_i model is valid for perfectly conducting particles and in the absence of external electric fields; these simplifications need to be addressed in future work on particle charging.« less
  3. We consider particles obeying Langevin dynamics while being at known positions and having known velocities at the two end-points of a given interval. Their motion in phase space can be modeled as an Ornstein–Uhlenbeck process conditioned at the two end-points—a generalization of the Brownian bridge. Using standard ideas from stochastic optimal control we construct a stochastic differential equation (SDE) that generates such a bridge that agrees with the statistics of the conditioned process, as a degenerate diffusion. Higher order linear diffusions are also considered. In general, a time-varying drift is sufficient to modify the prior SDE and meet the end-point conditions. When the drift is obtained by solving a suitable differential Lyapunov equation, the SDE models correctly the statistics of the bridge. These types of models are relevant in controlling and modeling distribution of particles and the interpolation of density functions.
  4. Particle charging in the afterglows of non-thermal plasmas typically take place in a non-neutral space charge environment. We model the same by incorporating particle-ion collision rate constant models, developed in prior work by analyzing particle-ion trajectories calculated using Langevin Dynamics simulations, into species transport equations for ions, electrons and charged particles in the afterglow. A scaling analysis of particle charging and additional Langevin Dynamics calculations of the particle-ion collision rate constant are presented to extend the range of applicability to ion electrostatic to thermal energy ratios of 300 and diffusive Knudsen number (that scales inversely with gas pressure) up to 2000. The developed collision rate constant models are first validated by comparing predictions of particle charge against measured values in a stationary, non-thermal DC plasma from past PK-4 campaigns published in Phys. Rev. Lett. 93(8): 085001 and Phys. Rev. E 72(1): 016406). The comparisons reveal excellent agreement within ±35% for particles of radius 0.6,1.0,1.3 μm in the gas pressure range of ~20-150 Pa. The experiments to probe particle charge distributions by Sharma et al. (J. Physics D: Appl. Phys. 53(24): 245204) are modeled using the validated particle-ion collision rate constant models and the calculated charge fractions are compared with measurements.more »The comparisons reveal that the ion/electron concentration and gas temperature in the afterglow critically influence the particle charge and the predictions are generally in qualitative agreement with the measurements. Along with critical assessment of the modeling assumptions, several recommendations are presented for future experimental design to probe charging in afterglows.« less
  5. We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for polymers in solution, which conserves the dynamic properties of the reference microscopic system. In particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are coarse-grained as one CG particle, and the solvent degrees of freedom are eliminated. The dynamics of the CG system is governed by the generalized Langevin equation (GLE) derived via the Mori-Zwanzig formalism, by which the CG variables can be directly and rigorously linked to the microscopic dynamics generated by molecular dynamics (MD) simulations. The solvent-mediated dynamics of polymers is modeled by the non-Markovian stochastic dynamics in GLE, where the memory kernel can be computed from the MD trajectories. To circumvent the difficulty in direct evaluation of the memory term and generation of colored noise, we exploit the equivalence between the non-Markovian dynamics and Markovian dynamics in an extended space. To this end, the CG system is supplemented with auxiliary variables that are coupled linearly to the momentum and among themselves, subject to uncorrelated Gaussian white noise. A high-order time-integration scheme is used to solve the extended dynamics to further accelerate the CG simulations. To assess, validate, and demonstrate the established implicit-solventmore »CG modeling, we have applied it to study four different types of polymers in solution. The dynamic properties of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and mean square displacement as functions of time are evaluated in both CG and MD simulations. Results show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG models to reproduce dynamic properties of the reference microscopic system and to characterize long-time dynamics of polymers in solution.« less