skip to main content


Title: Equation of State and Energy Loss of Hot and Dense Quark-Gluon matter from Holographic Black Holes
By using gravity/gauge correspondence, we construct a holographic model, constrained to mimic the lattice QCD equation of state at zero density, to investigate the temperature and baryon chemical potential dependence of the equation of state. We also obtained the energy loss of light and heavy partons within the hot and dense plasma represented by the heavy quark drag force, Langevin diffusion coefficients and jet quenching parameter at the critical point and across the first-order transition line predicted by the model.  more » « less
Award ID(s):
2208724 2103680 2116686 1654219
NSF-PAR ID:
10425257
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Kim, Y.; Moon, D.H.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
276
ISSN:
2100-014X
Page Range / eLocation ID:
01013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We develop a new heavy quark transport model, QLBT, to simulate the dynamical propagation of heavy quarks inside the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. Our QLBT model is based on the linear Boltzmann transport (LBT) model with the ideal QGP replaced by a collection of quasi-particles to account for the non-perturbative interactions among quarks and gluons of the hot QGP. The thermal masses of quasi-particles are fitted to the equation of state from lattice QCD simulations using the Bayesian statistical analysis method. Combining QLBT with our advanced hybrid fragmentation-coalescence hadronization approach, we calculate the nuclear modification factor$$R_\mathrm {AA}$$RAAand the elliptic flow$$v_2$$v2ofDmesons at the Relativistic Heavy-Ion Collider and the Large Hadron Collider. By comparing our QLBT calculation to the experimental data on theDmeson$$R_\mathrm {AA}$$RAAand$$v_2$$v2, we extract the heavy quark transport parameter$$\hat{q}$$q^and diffusion coefficient$$D_\mathrm {s}$$Dsin the temperature range of$$1-4~T_\mathrm {c}$$1-4Tc, and compare them with the lattice QCD results and other phenomenological studies.

     
    more » « less
  2. The equation of state (EoS) of QCD is a crucial input for the modeling of heavy-ion-collision (HIC) and neutron-star-merger systems. Calculations of the fundamental theory of QCD, which could yield the true EoS, are hindered by the infamous Fermi sign problem which only allows direct simulations at zero or imaginary baryonic chemical potential. As a direct consequence, the current coverage of the QCD phase diagram by lattice simulations is limited. In these proceedings, two different equations of state based on first-principle lattice QCD (LQCD) calculations are discussed. The first is solely informed by the fundamental theory by utilizing all available diagonal and non-diagonal susceptibilities up to O(µ 4 B) in order to reconstruct a full EoS at finite baryon number, electric charge and strangeness chemical potentials. For the second, we go beyond information from the lattice in order to explore the conjectured phase structure, not yet determined by LQCD methods, to assist the experimental HIC community in their search for the critical point. We incorporate critical behavior into this EoS by relying on the principle of universality classes, of which QCD belongs to the 3D Ising Model. This allows one to study the effects of a singularity on the thermodynamical quantities that make up the equation of state used for hydrodynamical simulations of HICs. Additionally, we ensure that these EoSs are valid for applications to HICs by enforcing conditions of strangeness neutrality and fixed charge-to-baryonnumber ratio. 
    more » « less
  3. The finite nuclear thickness affects the energy density (t) and conserved-charge densities such as the net-baryon density nB(t) produced in heavy ion collisions. While the effect is small at high collision energies where the Bjorken energy density formula for the initial state is valid, the effect is large at low collision energies, where the nuclear crossing time is not small compared to the parton formation time. The temperature T(t) and chemical potentials µ(t) of the dense matter can be extracted from the densities for a given equation of state (EOS). Therefore, including the nuclear thickness is essential for the determination of the T-µB trajectory in the QCD phase diagram for relativistic nuclear collisions at low to moderate energies such as the RHIC-BES energies. In this proceeding, we will first discuss our semi-analytical method that includes the nuclear thickness effect and its results on the densities є(t), nB(t), nQ(t), and nS(t). Then, we will show the extracted T(t), µB(t), µQ(t), and µS(t) for a quark-gluon plasma using the ideal gas EOS with quantum or Boltzmann statistics. Finally, we will show the results on the T-µB trajectories in relation to the possible location of the QCD critical end point. This semi-analytical model provides a convenient tool for exploring the trajectories of nuclear collisions in the QCD phase diagram. 
    more » « less
  4. Abstract

    We construct models for Jupiter’s interior that match the gravity data obtained by the Juno and Galileo spacecraft. To generate ensembles of models, we introduce a novelquadraticMonte Carlo technique, which is more efficient in confining fitness landscapes than the affine invariant method that relies on linear stretch moves. We compare how long it takes the ensembles of walkers in both methods to travel to the most relevant parameter region. Once there, we compare the autocorrelation time and error bars of the two methods. For a ring potential and the 2d Rosenbrock function, we find that our quadratic Monte Carlo technique is significantly more efficient. Furthermore, we modified thewalkmoves by adding a scaling factor. We provide the source code and examples so that this method can be applied elsewhere. Here we employ our method to generate five-layer models for Jupiter’s interior that include winds and a prominent dilute core, which allows us to match the planet’s even and odd gravity harmonics. We compare predictions from the different model ensembles and analyze how much an increase in the temperature at 1 bar and ad hoc change to the equation of state affect the inferred amount of heavy elements in the atmosphere and in the planet overall.

     
    more » « less
  5. Abstract Detectable electromagnetic counterparts to gravitational waves from compact binary mergers can be produced by outflows from the black hole-accretion disk remnant during the first 10 s after the merger. Two-dimensional axisymmetric simulations with effective viscosity remain an efficient and informative way to model this late-time post-merger evolution. In addition to the inherent approximations of axisymmetry and modeling turbulent angular momentum transport by a viscosity, previous simulations often make other simplifications related to the treatment of the equation of state and turbulent transport effects. In this paper, we test the effect of these modeling choices. By evolving with the same viscosity the exact post-merger initial configuration previously evolved in Newtonian viscous hydrodynamics, we find that the Newtonian treatment provides a good estimate of the disk ejecta mass but underestimates the outflow velocity. We find that the inclusion of heavy nuclei causes a notable increase in ejecta mass. An approximate inclusion of r-process effects has a comparatively smaller effect, except for its designed effect on the composition. Diffusion of composition and entropy, modeling turbulent transport effects, has the overall effect of reducing ejecta mass and giving it a speed with lower average and more tightly-peaked distribution. Also, we find significant acceleration of outflow even at distances beyond 10 000 km, so that thermal wind velocities only asymptote beyond this radius and at higher values than often reported. 
    more » « less