Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices
- Award ID(s):
- 1709061
- PAR ID:
- 10221153
- Date Published:
- Journal Name:
- ACS Nano
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 1936-0851
- Page Range / eLocation ID:
- 13491 to 13499
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Matyjaszewski, Krzysztof; Gnanou, Yves; Hadjichristidis, Nikos; Muthukumar, Murugappan (Ed.)Polymers exist in the glass state for a wide range of applications. The slow and limited crystallizability of polymers means that solid polymer materials are either wholly or in part glassy, giving them great importance. The glass is a nonequilibrium amorphous state that occurs because the cooperative molecular dynamics become kinetically trapped on cooling as the available thermal energy for molecular motion decreases. This article aims to provide the reader with a molecular picture of what this packing frustration that causes glass formation means for polymers. Experimental considerations for accurately measuring the glass transition temperature 𝑇𝑔 given this nonequilibrium nature will be discussed. Basic concepts underpinning theoretical efforts to model the glass transition will be summarized to provide the reader with a lexicon and paradigm for understanding different approaches used in the field to capture the main characteristics of glasses. Current research areas of interest in polymer glasses will be briefly outlined. Hopefully, this article will provide the beginning investigator a starting point for their own studies.more » « less
-
When polymer–nanoparticle (NP) attractions are sufficiently strong, a bound polymer layer with a distinct dynamic signature spontaneously forms at the NP interface. A similar phenomenon occurs near a fixed attractive substrate for thin polymer films. While our previous simulations fixed the NPs to examine the dilute limit, here, we allow the NP to move. Our goal is to investigate how NP mobility affects the signature of the bound layer. For small NPs that are relatively mobile, the bound layer is slaved to the motion of the NP, and the signature of the bound layer relaxation in the intermediate scattering function essentially disappears. The slow relaxation of the bound layer can be recovered when the scattering function is measured in the NP reference frame, but this process would be challenging to implement in experimental systems with multiple NPs. Instead, we use the counterintuitive result that the NP mass affects its mobility in the nanoscale limit, along with the more expected result that the bound layer increases the effective NP mass, to suggest that the signature of the bound polymer manifests as a change in NP diffusivity. These findings allow us to rationalize and quantitatively understand the results of recent experiments focused on measuring NP diffusivity with either physically adsorbed or chemically end-grafted chains.more » « less