Abstract Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements. 
                        more » 
                        « less   
                    
                            
                            A High‐Performance Symmetric Supercapacitor from Porous Activated Carbon under Compression
                        
                    
    
            The realization of biomass‐derived supercapacitors of high performance is of practical importance for the manufacturing of supercapacitors from green and renewable sources. Herein, the feasibility of constructing high‐performance supercapacitors from potato‐derived activated carbon (AC) is demonstrated. The potato‐derived AC is produced from potato mash through hydrothermal treatment and high‐temperature activation with KOH as agent. The supercapacitors with aqueous electrolyte of 6 mKOH and a mass loading of 5 mg per electrode achieve a specific gravimetric capacitance of 333.7 F g−1per electrode and a specific energy of 11.75 W h g−1at a specific power of 197.6 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. The supercapacitors with a mass loading of 10 mg per electrode achieve the maximum specific gravimetric capacitance of 340.6 F g−1and a specific energy of 11.75 W h g−1at a specific power of 194.2 W kg−1at a current density of 0.4 A g−1under a nominal compressive stress of 7.96 MPa. Increasing the compaction of electrode materials under compressive stress has the potential to increase the electrochemical performance of supercapacitors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1634540
- PAR ID:
- 10221199
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Energy Technology
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2194-4288
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract For the sustainable growth of future generations, energy storage technologies like supercapacitors and batteries are becoming more and more common. However, reliable and high‐performance materials’ design and development is the key for the widespread adoption of batteries and supercapacitors. Quantum dots with fascinating and unusual properties are expected to revolutionize future technologies. However, while the recent discovery of quantum dots honored with a Nobel prize in Chemistry, their benefits for the tenacious problem of energy are not realized yet. In this context, herein, chemical‐composition tuning enabled exceptional performance of NiCo2O4(NCO)/graphene quantum dots (GQDs) is reported, which outperform the existing similar materials, in supercapacitors. A comprehensive study is performed on the synthesis, characterization, and electrochemical performance evaluation of highly functional NCO/GQDs in supercapacitors delivering enhanced energy efficiency. The high‐performance, functional NCO/GQDs electrode materials are synthesized by the incorporation of GQDs into NCO. The effect of variable amount of GQDs on the energy performance characteristics of NCO/GQDs in supercapacitors is studied systematically. In‐depth structural and chemical bonding analyses using X‐ray diffraction (XRD) and Raman spectroscopic studies indicate that all the NCO/GQDs composites crystallize in the spinel cubic phase of NiCo2O4while graphene integration evident in all the NCO/GQDs. The scanning electron microscopy imaging analysis reveals homogeneously distributed spherical particles with a size distribution of 5–9 nm validating the formation of QDs. The high‐resolution transmission electron microscopy analyses reveal that the NCOQDs are anchored on graphene sheets, which provide a high surface area of 42.27 m2g−1and high mesoporosity for the composition of NCO/GQDs‐10%. In addition to establishing reliable electrical connection to graphene sheets, the NCOQDs provide reliable 3D‐conductive channels for rapid transport throughout the electrode as well as synergistic effects. Chemical‐composition tuning, and optimization yields NCO/GQDs‐10% to deliver the best specific capacitance of 3940 Fg−1at 0.5 Ag−1, where the electrodes retain ≈98% capacitance after 5000 cycles. The NCO/GQD‐10%//AC asymmetric supercapacitor device demonstrates outstanding energy density and power density values of 118.04 Wh kg−1and 798.76 W kg−1, respectively. The NCO/GQDs‐10%//NCO/GQDs‐10% symmetric supercapacitor device delivers excellent energy and power density of 24.30 Wh kg−1and 500 W kg−1, respectively. These results demonstrate and conclude that NCO/GQDs are exceptional and prospective candidates for developing next‐generation high‐performance and sustainable energy storage devices.more » « less
- 
            Abstract All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g−1at a current density of 1 A g−1and the GNR/Bi2Se3composite electrode exhibits a specific capacity of 100.2 mAh g−1at a current density of 0.5 A g−1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm−1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg−1at the power density of 559 W kg−1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage.more » « less
- 
            Supercapacitors and batteries are essential for sustainable energy development. However, the bottleneck is the associated high cost, which limits bulk use of batteries and supercapacitors. In this context, realizing that the cost of energy‐storage device mainly depends on materials, synthesis processes/procedures, and device fabrication, an effort is made to rationally design and develop novel low‐cost electrode materials with enhanced electrochemical performance in asymmetric supercapacitors. Herein, surface functionalization approach is adopted to design low‐cost 3D mesoporous and nanostructured nickel–nickel oxide electrode materials using facile synthesis for application in supercapacitors. It is demonstrated that the 3D mesoporous Ni provides the high surface area and enhanced ionic conductivity, while germanium functionalization improves the electrical conductivity and reduces the charge‐transfer resistance of NiO. Surface functionalization with Ge demonstrates the significant improvement in specific capacitance of NiO. The asymmetric supercapacitor using these Ge‐functionalized NiO–Ni electrodes provides a specific capacitance of 304 Fg−1(94 mF cm−2), energy density of 23.8 Wh kg−1(7.35 μWh cm−2), and power density of 6.8 kW kg−1(2.1 mW cm−2) with excellent cyclic stability of 92% after 10 000 cycles. To validate their practical applications, powering the digital watch using the asymmetric supercapacitors in laboratory conditions is demonstrated.more » « less
- 
            Hierarchically porous electrodes made of electrochemically active materials and conductive additives may display synergistic effects originating from the interactions between the constituent phases, and this approach has been adopted for optimizing the performances of many electrode materials. Here we report our findings in design, fabrication, and characterization of a hierarchically porous hybrid electrode composed of α-NiS nanorods decorated on reduced graphene oxide (rGO) (denoted as R-NiS/rGO), derived from water-refluxed metal–organic frameworks/rGO (Ni-MOF-74/rGO) templates. Microanalyses reveal that the as-synthesized α-NiS nanorods have abundant (101) and (110) surfaces on the edges, which exhibit a strong affinity for OH − in KOH electrolyte, as confirmed by density functional theory-based calculations. The results suggest that the MOF-derived α-NiS nanorods with highly exposed active surfaces are favorable for fast redox reactions in a basic electrolyte. Besides, the presence of rGO in the hybrid electrode greatly enhances the electronic conductivity, providing efficient current collection for fast energy storage. Indeed, when tested in a supercapacitor with a three-electrode configuration in 2 M KOH electrolyte, the R-NiS/rGO hybrid electrode exhibits a capacity of 744 C g −1 at 1 A g −1 and 600 C g −1 at 50 A g −1 , indicating remarkable rate performance, while maintaining more than 89% of the initial capacity after 20 000 cycles. Moreover, when coupled with a nitrogen-doped graphene aerogel (C/NG-A) negative electrode, the hybrid supercapacitor (R-NiS/rGO/electrolyte/C/NG-A) achieved an ultra-high energy density of 93 W h kg −1 at a power density of 962 W kg −1 , while still retaining an energy density of 54 W h kg −1 at an elevated working power of 46 034 W kg −1 .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
