skip to main content


Title: Non-reciprocal propagation versus non-reciprocal control
Award ID(s):
1741694
NSF-PAR ID:
10221291
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature Photonics
Volume:
14
Issue:
12
ISSN:
1749-4885
Page Range / eLocation ID:
711 to 711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Significant amplitude-independent and passive non-reciprocal wave motion can be achieved in a one-dimensional (1D) discrete chain of masses and springs with bilinear elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring stiffness are first examined for their non-reciprocal properties. These are combined as building blocks into more complex configurations with the objective of maximizing non-reciprocal wave behavior. The non-reciprocal property is demonstrated by the significant difference between the transmitted pulse displacement amplitudes and energies for incidence from opposite directions. Extreme non-reciprocity is realized when almost-zero transmission is achieved for the propagation from one direction with a noticeable transmitted pulse for incidence from the other. These models provide the basis for a class of simple 1D non-reciprocal designs and can serve as the building blocks for more complex and higher dimensional non-reciprocal wave systems. 
    more » « less
  2. Abstract

    Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.

     
    more » « less