skip to main content


Title: The Effects of Pulse Frequency on Chemical Species Formation in a Nanosecond Pulsed Plasma Gas-liquid Film Reactor
The influence of pulse frequency (1−60 kHz) in a nanosecond filamentary discharge propagating along a flowing liquid water film was assessed with regards to the formation of chemical species with argon and helium carrier gasses. The production rate and energy yield for H₂O₂ and H₂ were measured for both carrier gases, and O₂ formation was determined for helium. The effect of pulse frequency on the energy dissipated per pulse as well as electron density was also investigated. The results indicate that the energy yield for H₂O₂ decreases with increasing pulse frequency while the energy yields of H₂ and O₂ remain relatively unaffected. It is proposed that the difference in the trends of the liquid versus the significantly longer residence time of the liquid phase allowing for more degradation of formed hydrogen peroxide before it is able exit the reactor.  more » « less
Award ID(s):
1702166
NSF-PAR ID:
10221338
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International journal of plasma environmental science technology
Volume:
14
Issue:
1
ISSN:
2435-0125
Page Range / eLocation ID:
e01008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsed dielectric barrier discharges (DBD) in He–H 2 O and He–H 2 O–O 2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H 2 O 2 ). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H 2 O 2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H 2 O 2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H 2 O 2 . OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H 2 O 2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O 2 in the He admixture decreases the OH densities and increases the H 2 O 2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H 2 O 2 mole fractions, except for the H 2 O 2 in the He–H 2 O–O 2 mixture which is relatively insensitive to the additional pulses. 
    more » « less
  2. Formaldehyde is an essential building block for hundreds of chemicals and a promising liquid organic hydrogen carrier (LOHC), yet its indirect energy-intensive synthesis process prohibits it from playing a more significant role. Here we report a direct CO reduction to formaldehyde (CORTF) process that utilizes hydrogen underpotential deposition to overcome the thermodynamic barrier and the scaling relationship restriction. This is the first time that this reaction has been realized under ambient conditions. Using molybdenum phosphide as a catalyst, formaldehyde was produced with nearly a 100% faradaic efficiency in aqueous KOH solution, with its formation rate being one order of magnitude higher compared with the state-of-the-art thermal catalysis approach. Simultaneous tuning of the current density and reaction temperature led to a more selective and productive formaldehyde synthesis, indicating the electrochemical and thermal duality of this reaction. DFT calculations revealed that the desorption of the *H 2 CO intermediate likely served as the rate-limiting step, and the participation of H 2 O made the reaction thermodynamically favorable. Furthermore, a full-cell reaction set-up was demonstrated with CO hydrogenation to HCHO achieved without any energy input, which fully realized the spontaneous potential of the reaction. Our study shows the feasibility of combining thermal and electrochemical approaches for realizing the thermodynamics and for scaling relationship-confined reactions, which could serve as a new strategy in future reaction design. 
    more » « less
  3. The measurement and stabilization of the carrier–envelope offset frequencyfCEOvia self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficientfCEOstabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize anf-2finterferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. ThefCEObeatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strongfCEOsignal as compared to a traditionalf-2finterferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory.

     
    more » « less
  4. Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations. This superposition results in charge migration between the CC π orbital and the iodine π -type lone pair which can be monitored by strong field ionization with short, intense probe pulses. Strong field ionization of the X and A states of HCCI cation was simulated with time-dependent configuration interaction using singly ionized configurations and singly excited, singly ionized configurations (TD-CISD-IP) and an absorbing boundary. Studies with static fields were used to obtain the 3-dimensional angular dependence of instantaneous ionization rates by strong fields and the orbitals involved in producing the cations and dications. The frequency of charge oscillation is determined by the energy separation of the X and A states; this separation can change depending on the direction and strength of the field. Furthermore, fields along the molecular axis can cause extensive mixing between the field-free X and A configurations. For coherent superpositions of the X and A states, the charge oscillations are characterized by two frequencies–the driving frequency of the laser field of the probe pulse and the intrinsic frequency due to the energy separation between the X and A states. For linear and circularly polarized pulses, the ionization rates show marked differences that depend on the polarization direction of the pulse, the carrier envelope phase and initial phase of the superposition. Varying the initial phase of the superposition at the beginning of the probe pulse is analogous to changing the delay between the pump and probe pulses. The charge oscillation in the coherent superposition of the X and A states results in maxima and minima in the ionization yield as a function of the superposition phase. 
    more » « less
  5. Abstract

    A continuous gas–liquid flowing film reactor with a nanosecond‐pulsed power supply was utilized for the degradation of perfluorooctanoic acid (PFOA) as assessed by fluoride (F) formation. PFOA, 50 mg/L, dissolved in deionized water was supplied at 2 ml/min with an argon carrier gas. The liquid phase was analyzed for Fusing ion chromatography. The power supply pulse frequency (f) was varied between 0.25‐ and 10‐kHz using a constant 16‐kV input voltage and 40‐ns pulse width. The highest Fproduction rate (), 1.57 × 10−8 mol/s, occurred at 5 kHz whereas the highest efficiency of Fproduction (), 9.12 × 10−9 mol/J, was found at 0.25 kHz.

     
    more » « less