This paper presents a unique Virtual Prototyping Process (VPP) that allows for metaheuristic optimization of the building block based Power Electronic Converter systems. The VPP allows for exploration of a range of design space variables, including voltage levels, power semiconductor device technology and thermal management approach against competing objectives such as power density, efficiency and specific cost given electrical and environmental constraints. A unique feature of proposed VPP is compilation of lower voltage building blocks into a much higher voltage rated system and inclusion of allocations for insulation systems, thermal management, accessibility, busing/interconnections and frame/structure/chassis. This approach enables understanding of these practical considerations on power density. This paper presents a use case of a Medium Voltage ac (MVac) to Low Voltage dc (LVdc) solid state transformer.
more »
« less
Review of Standards on Insulation Coordination for Medium Voltage Power Converters
The increasing viability of wide band gap power semiconductors, widespread use of distributed power generations, and rise in power levels of these applications have increased interest and need for medium voltage converters. Understanding the definitions of insulation coordination and their relationship to applications and methodologies used in the test environment allows system engineers to select the correct insulation materials for the design and to calculate the required distances between the conductive surfaces, accessible parts and ground accurately. Although, design guidelines are well established for low voltage systems, there are some deficiencies in understanding and meeting the insulation coordination requirements in medium voltage, medium frequency applications. In this study, an overview on standards for insulation coordination and safety requirements is presented to guide researchers in the development of medium voltage power electronic converters and systems. In addition, an insulation coordination study is performed as a case study for a medium frequency isolated DC/DC converter that provides conversion from a 13.8kV AC system to a 4.16kV AC system.
more »
« less
- Award ID(s):
- 1939124
- PAR ID:
- 10221367
- Date Published:
- Journal Name:
- IEEE Open Journal of Power Electronics
- ISSN:
- 2644-1314
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unfolding-based single-stage ac-dc converters offer benefits in terms of efficiency and power density due to the low-frequency operation of the Unfolder, resulting in negligible switching losses. However, the operation of the Unfolder results in time-varying dc voltages at the input of the subsequent dc-dc converter, complicating its soft-switching analysis. The complication is further enhanced due to the nonlinear nature of the output capacitance ( Coss ) of MOSFETs employed in the dc-dc converter. Furthermore, unlike two-stage topologies with a constant dc-link voltage, as seen in high-frequency grid-tied converters, grid voltage fluctuations also impact the dc input voltages of the dc-dc converter in unfolding-based systems. This work comprehensively analyzes the soft-switching phenomenon in the T-type primary bridge-based dc-dc converter used in unfolding-based topologies, considering all the aforementioned challenges. An energy-based methodology is proposed to determine the minimum zero-voltage switching (ZVS) current and ZVS time during various switching transitions of the T-type bridge. It is shown that the existing literature on the ZVS analysis of the T-type bridge-based resonant dc-dc converter, relying solely on capacitive energy considerations, substantially underestimates the required ZVS current values, with errors reaching up to 50%. The proposed analysis is verified through both simulation and hardware testing. The hardware testing is conducted on a 20-kW 3- ϕ unfolding-based ac-dc converter designed for high-power electric vehicle battery charging applications. The ZVS analysis is verified at various grid angles with the proposed analysis ensuring a complete ZVS operation of the ac-dc system throughout the grid cycle.more » « less
-
MMC-based back-to-back (B2B) converters are promising for hybrid AC/DC transmission systems when integrating large scale PV sources. This paper proposes a novel configuration for hybrid AC transmission systems with B2B converters and multi-terminal direct current (MTDC) operation which facilitates the integration of PV energy and enhances the system stability and reliability. This is achieved by an advanced interconnection with two operation modes: 1-A bi-directional power flow via AC connections, and 2- Direct active power injection to the MTDC from PV source. Conventional outer, inner and capacitor voltage balancing control systems are utilized in this study for regulating the currents and voltages of B2B converter. Also, The Perturb and observe (P and O) technique is implemented for obtaining maximum power point tracking (MPPT) of the PV generation considering a dc-dc boost converter. The efficacy of this proposed configuration is verified through time-domain simulations carried out by MATLAB/SIMULINK.more » « less
-
AC/DC hybrid microgrids are becoming potentially more attractive due to the proliferation of renewable energy sources, such as photovoltaic generation, battery energy storage systems, and wind turbines. The collaboration of AC sub-microgrids and DC sub-microgrids improves operational efficiency when multiple types of power generators and loads coexist at the power distribution level. However, the voltage stability analysis and software validation of AC/DC hybrid microgrids is a critical concern, especially with the increasing adoption of power electronic devices and various types of power generation. In this manuscript, we investigate the modeling of AC/DC hybrid microgrids with grid-forming and grid-following power converters. We propose a rapid simulation technique to reduce the simulation runtime with acceptable errors. Moreover, we discuss the stability of hybrid microgrids with different types of faults and power mismatches. In particular, we examine the voltage nadir to evaluate the transient stability of the hybrid microgrid. We also design a droop controller to regulate the power flow and alleviate voltage instability. During our study, we establish a Simulink-based simulation platform for operational analysis of the microgrid.more » « less
-
This paper proposes a combination of cell-level energy processing and a Cascaded H-Bridge Multilevel Inverter (CHBMLI) for medium voltage, grid connected, battery energy storage systems. One isolated converter (Dual Active Bridge DC-DC Converter) manages each cell in the Battery Module, and the combination of Battery module and converter modules are cascaded to get the multi-level ac output voltage. The operating principle and control design of cell level isolated converter with double frequency ripple power, and the control strategy of the CHBMLI are presented. The performance of the battery cell level CHBMLI system with a 9-level inverter at small scale power level is validated through the simulations in MATLAB ® /SIMULINK ® software. The configuration holds promise for improving the performance and reliability of the battery modules at the cell level while also providing cell level galvanic isolation and high ac voltage.more » « less