skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Steady states of thin film droplets on chemically heterogeneous substrates
Abstract We study steady-state thin films on chemically heterogeneous substrates of finite size, subject to no-flux boundary conditions. Based on the structure of the bifurcation diagram, we classify the 1D steady-state solutions that exist on such substrates into six different branches and develop asymptotic estimates for the steady states on each branch. Using perturbation expansions, we show that leading-order solutions provide good predictions of the steady-state thin films on stepwise-patterned substrates. We show how the analysis in one dimension can be extended to axisymmetric solutions. We also examine the influence of the wettability contrast of the substrate pattern on the linear stability of droplets and the time evolution for dewetting on small domains. Results are also applied to describe 2D droplets on hydrophilic square patches and striped regions used in microfluidic applications.  more » « less
Award ID(s):
2008255
PAR ID:
10221539
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Applied Mathematics
Volume:
85
Issue:
6
ISSN:
0272-4960
Page Range / eLocation ID:
980 to 1020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T g ) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics. 
    more » « less
  2. Abstract Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high‐quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3(STO), MgO, LaAlO3, a‐Al2O3,and many others. Recent successes in transferring these complex oxides as free‐standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost‐effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high‐resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre‐strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high‐quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices. 
    more » « less
  3. Motivation Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. Approach We develop the ‘stopped-time’ technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. Findings We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications. 
    more » « less
  4. Multilayered thermoelectric Sn/Sn+SnO2 thin films were prepared using KJL DC/RF magnetron sputtering system under Ar gas plasma on the SiO2 substrates. The thicknesses of the fabricated thin films were found using Filmetrics UV thickness measurement system. The fabricated thin films were annealed at different temperatures for one hour to tailor the thermoelectric properties. In this study, unannealed, annealed at 150 and 300 °C samples were characterized using Thermo Fisher XPS system brought to the Alabama A&M University by the NSF-MRI support. X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a type of analysis used for characterization of various surface materials. XPS is mostly known for the characterization of thin films - which are coatings that have been deposited onto a substrate and may be comprised of many different materials to alter or enhance the substrate’s performance. XPS analysis provides information for composition, chemical states, depth profile, imaging and thickness of thin film. This paper focuses on the application of XPS techniques in thin film research for Sn/Sn+SnO2 multilayered thermoelectric system and SiO2 substrates annealed at different temperatures. Since SiO2 substrates were used during the deposition of the multilayer thin films, we would like to perform detailed XPS studies on the SiO2 substrates. SiO2 substrates is being used with many researchers, this manuscript will be good reference for the researchers using SiO2 substrates. Thermal treatment of the substrates and the multilayered thin films has caused some changes of the XPS characterization including binding energy, depth profile, peak value and FWHM. The treatment effects were discussed and compared to each other. 
    more » « less
  5. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less