skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome Sequence of a Blattabacterium Strain Isolated from the Viviparous Cockroach, Diploptera punctata
ABSTRACT Here, we report the genome sequence and characterization for a Blattabacterium strain isolated from the viviparous cockroach, Diploptera punctata , which provides amino acids critical for intrauterine embryo development. The genome was assembled by sequencing of the cockroach fat body, which is the location of this obligate symbiont.  more » « less
Award ID(s):
1654417
PAR ID:
10221618
Author(s) / Creator(s):
; ;
Editor(s):
Newton, Irene L.
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
9
Issue:
35
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drake, Harold L. (Ed.)
    ABSTRACT Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides , Dysgonomonas , Paludibacter , and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility. IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach ( Periplaneta americana ) harbors many bacterial phyla (e.g., Bacteroidetes ) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development. 
    more » « less
  2. Abstract The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach,Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newbornD. punctatauntil melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy. 
    more » « less
  3. Hudson, André O (Ed.)
    ABSTRACT Here, we report the draft genome ofAureococcus anophagefferensstrain CCMP1851, which is susceptible to the virusKratosvirus quantuckense. CCMP1851 complements an available genome for a virus-resistant strain (CCMP1850) isolated from the same bloom. Future studies can now use this genome to examine genetic hints of virus resistance and susceptibility. 
    more » « less
  4. Tribble, C (Ed.)
    Abstract The majority of sequenced genomes in the monocots are from species belonging to Poaceae, which include many commercially important crops. Here, we expand the number of sequenced genomes from the monocots to include the genomes of 4 related cyperids: Carex cristatella and Carex scoparia from Cyperaceae and Juncus effusus and Juncus inflexus from Juncaceae. The high-quality, chromosome-scale genome sequences from these 4 cyperids were assembled by combining whole-genome shotgun sequencing of Nanopore long reads, Illumina short reads, and Hi-C sequencing data. Some members of the Cyperaceae and Juncaceae are known to possess holocentric chromosomes. We examined the repeat landscapes in our sequenced genomes to search for potential repeats associated with centromeres. Several large satellite repeat families, comprising 3.2–9.5% of our sequenced genomes, showed dispersed distribution of large satellite repeat clusters across all Carex chromosomes, with few instances of these repeats clustering in the same chromosomal regions. In contrast, most large Juncus satellite repeats were clustered in a single location on each chromosome, with sporadic instances of large satellite repeats throughout the Juncus genomes. Recognizable transposable elements account for about 20% of each of the 4 genome assemblies, with the Carex genomes containing more DNA transposons than retrotransposons while the converse is true for the Juncus genomes. These genome sequences and annotations will facilitate better comparative analysis within monocots. 
    more » « less
  5. Abstract Nucella lapillus is an important player in rocky shore food chains and has been a focal organism of ecological and evolutionary studies for decades. Despite poor dispersal, they have a broad geographic range, which makes them an ideal species to examine isolation by distance and selection across environmental gradients. Here we present the fully annotated genome of N. lapillus generated with Oxford Nanopore Techonology sequencing at ∼37× coverage. The genome assembly is 2.32 Gbp and consists of 2,525 contigs, with an N50 length of 2 Mbp. Repeat annotation identified 2,491 families that cover 67.56% of the genome, which is similar to other gastropods. Despite its large size and high proportion of repeats, the genome is of high quality. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis revealed a score of 96.8%. Functional annotation of the genome produced 45,848 protein-coding genes with a 96.6% BUSCO score. Genomic resources for mollusks lag behind that of other phyla, perhaps because many of their innate characteristics complicate DNA extraction, sequencing, and assembly. This new N. lapillus genome will increase our genomic understanding of the second largest phylum (and the most diverse class within said phylum) and serve as a key resource to advance studies on the organismal biology and population genetics of this iconic species as well as the connection between genomic variation and community-level processes. 
    more » « less