skip to main content


Title: Advancing Human-Centric LED Lighting Using Na2MgPO4F:Eu2+
The proliferation of energy-efficient light-emitting diode (LED) lighting has resulted in continued exposure to blue light, which has been linked to cataract formation, circadian disruption, and mood disorders. Blue light can be readily minimized in pursuit of “human-centric” lighting using a violet LED chip (λem ≈ 405 nm) downconverted by red, green, and blue-emitting phosphors. However, few phosphors efficiently convert violet light to blue light. This work reports a new phosphor that meets this demand. Na2MgPO4F:Eu2+ can be excited by a violet LED yielding an efficient, bright blue emission. The material also shows zero thermal quenching and has outstanding chromatic stability. The chemical robustness of the phosphor was also confirmed through prolonged exposure to water and high temperatures. A prototype device using a 405 nm LED, Na2MgPO4F:Eu2+, and a green and red-emitting phosphor produces a warm white light with a higher color rendering index than a commercially purchased LED light bulb while significantly reducing the blue component. These results demonstrate the capability of Na2MgPO4F:Eu2+ as a next-generation phosphor capable of advancing human-centric lighting.  more » « less
Award ID(s):
1911311
NSF-PAR ID:
10221713
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Computers, televisions, and smartphones are revolutionized by the invention of InGaN blue light‐emitting diode (LED) backlighting. Yet, continual exposure to the intense blue LED emission from these modern displays can cause insomnia and mood disorders. Developing “human‐centric” backlighting that uses a violet‐emitting LED chip and a trichromatic phosphor mixture to generate color images is one approach that addresses this problem. The challenge is finding a blue‐emitting phosphor that possesses a sufficiently small Stokes’ shift to efficiently down‐convert violet LED light and produce a narrow blue emission. This work reports a new oxynitride phosphor that meets this demand. K3AlP3O9N:Eu2+ exhibits an unexpectedly narrow (45 nm, 2206 cm−1), thermally robust, and efficient blue photoluminescence upon violet excitation. Computational modeling and temperature‐dependent optical property measurements reveal that the narrow emission arises from a rare combination of preferential excitation and site‐selective quenching. The resulting chromaticity coordinates of K3AlP3O9N:Eu2+ lie closer to the vertex of the Rec. 2020 than a blue LED chip and provides access to ≈10% more colors than a commercial tablet when combined with commercial red‐ and green‐emitting phosphors. Alongside the wide gamut, tuning the emission from the violet LED and phosphor blend can reduce blue light emissions to produce next‐generation, human‐centric displays.

     
    more » « less
  2. null (Ed.)
    There is a significant need to identify cyan-emitting phosphors capable of filling the “cyan-gap” (480–520 nm) in full-visible-spectrum phosphor-converted white light-emitting diodes (pc-wLEDs). Here, a new broadband cyan-emitting phosphor that enables addressing of this challenge is reported. The compound, Ba 2 CaB 2 Si 4 O 14 :Ce 3+ , presents a bright cyan emission peaking at 478 nm with a large full width at half maximum of 142 nm (6053 cm −1 ), and minimal thermal quenching. The photoluminescence properties originate from Ce 3+ residing at two different crystallographic sites, a [BaO 9 ] distorted elongated square pyramid and a [CaO 6 ] trigonal prism. This combination results in an efficient, broad emission covering the blue to green region of the visible spectrum. Fabricating a simple dichromatic ultraviolet ( λ ex = 370 nm) pumped pc-wLED using Ba 2 CaB 2 Si 4 O 14 :Ce 3+ along with a commercially available red phosphor demonstrates full-visible-spectrum white light with high color rendering index ( R a > 90) and tunable correlated color temperature, showing the potential of this material for achieving high-quality LED-based lighting. 
    more » « less
  3. Developing chemically and thermally stable, highly efficient green-emitting inorganic phosphors is a significant challenge in solid-state lighting. One accessible pathway for achieving green emission is by forming a solid solution with superior blue-emitting materials. In this work, we demonstrate that the cyan-emission ( λ em = 481 nm) of the BaScO 2 F:Eu 2+ perovskite can be red-shifted by forming a solid solution following (Ba 1− x Sr x ) 0.98 Eu 0.02 ScO 2 F ( x = 0, 0.075, 0.15, 0.25, 0.33, 0.40). Although green emission is achieved ( λ em = 516 nm) as desired, the thermal quenching (TQ) resistance is reduced, and the photoluminescence quantum yield (PLQY) drops by 65%. Computation reveals the source of these changes. Surprisingly, a basic density functional theory analysis shows the gradual Sr Ba substitution has negligible effects on the band gap ( E g ) energy, suggesting the activation energy barrier for the thermal ionization quenching remains unchanged, while the nearly constant Debye temperature indicates no loss of average structural rigidity to explain the decrease in the PLQY. Instead, temperature-dependent ab initio molecular dynamics (AIMD) simulations show that gradual changes of the Eu 2+ ion's local coordination environment rigidity are responsible for the drop in the observed TQ and PLQY. These results express the need to computationally analyze the local rare-earth environment as a function of temperature to understand the fundamental origin of optical properties in new inorganic phosphors. 
    more » « less
  4. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. 
    more » « less
  5. Abstract

    Efficient broadband near‐infrared (NIR) emitting materials with an emission peak centered above 830 nm are crucial for smart NIR spectroscopy‐based technologies. However, the development of these materials remains a significant challenge. Herein, a series of design rules rooted in computational methods and empirical crystal‐chemical analysis is applied to identify a new Cr3+‐substituted phosphor. The compound GaTaO4:Cr3+emerged from this study is based on the material's high structural rigidity, suitable electronic environment, and relatively weak electron–phonon coupling. Irradiating this new phosphor with 460 nm blue light generates a broadband NIR emission (λem,max = 840 nm) covering the 700–1100 nm region of the electromagnetic spectrum with a full width at half maximum of 140 nm. The phase has a high internal quantum yield of 91% and excellent thermal stability, maintaining 85% of the room temperature emission intensity at 100 °C. Fabricating a phosphor‐converted light‐emitting diode device shows that the new compound generates an intense NIR emission (178 mW at 500 mA) with photoelectric efficiency of 6%. This work not only provides a new material that has the potential for next‐generation high‐power NIR applications but also highlights a set of design rules capable of developing highly efficient long‐wavelength broadband NIR materials.

     
    more » « less