skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping regional forest management units: a road-based framework in Southeastern Coastal Plain and Piedmont
Management practices are one of the most important factors affecting forest structure and function. Landowners in southern United States manage forests using appropriately sized areas, to meet management objectives that include economic return, sustainability, and esthetic enjoyment. Road networks spatially designate the socio-environmental elements for the forests, which represented and aggregated as forest management units. Road networks are widely used for managing forests by setting logging roads and firebreaks. We propose that common types of forest management are practiced in road-delineated units that can be determined by remote sensing satellite imagery coupled with crowd-sourced road network datasets. Satellite sensors do not always capture road-caused canopy openings, so it is difficult to delineate ecologically relevant units based only on satellite data. By integrating citizen-based road networks with the National Land Cover Database, we mapped road-delineated management units across the regional landscape and analyzed the size frequency distribution of management units. We found the road-delineated units smaller than 0.5 ha comprised 64% of the number of units, but only 0.98% of the total forest area. We also applied a statistical similarity test (Warren’s Index) to access the equivalency of road-delineated units with forest disturbances by simulating a serious of neutral landscapes. The outputs showed that the whole southeastern U.S. has the probability of road-delineated unit of 0.44 and production forests overlapped significantly with disturbance areas with an average probability of 0.50.  more » « less
Award ID(s):
1702835
PAR ID:
10221731
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forest Ecosystems
Volume:
8
Issue:
17
ISSN:
2095-6355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Timberline marks the transitions from continuous forests to sparse forests and tundra landscapes. As the spatial distribution and dynamics of timberline are closely associated with regional energy and carbon balance, mapping timberline is important to a wide range of environmental and ecological studies. However, current timberline delineation approaches remain under-developed. We proposed an automatic timberline delineation method based on a seeded region-growing segmentation technique and satellite-derived products of tree fractional cover. We applied our approach to the West Siberian Plain and Alaska treeline regions as defined by the Circumpolar Arctic Vegetation Map. The results demonstrate the effectiveness of the proposed method for the accurate delineation of the timberlines that spatially align well with very-high-resolution satellite images. Based on the delineated timberlines, we find regional-scale tree encroachment to be not as substantial as previously reported. The proposed approach can be applied to understanding climate-induced forest responses and inform forest management practices. 
    more » « less
  2. The paper is aimed at assessing the associations between the road networks geography and dynamics of wildfire events in the East Siberian boreal forest. We examined the relationship between the function of roads, their use, and management and the wildfire ignition, propagation, and termination during the catastrophic fire season of 2016 in the Irkutsk Region of Russia. Document analysis and interviews were utilized to identify main forest users and road infrastructure functional types and examine wildfire management practices. We combined community observations and satellite remotely sensed data to assess relationships between the location, extent, and timing of wildfires and different types of roads as fire sources, barriers, and suppression access points. Our study confirms a strong spatial relationship between the wildfire ignition points and roads differentiated by their types with the highest probability of fire ignition near forestry roads and the lowest near subsistence roads. Roads also play an important role in wildfire suppression, working as both physical barriers and access points for firefighters. Our research illustrates the importance of local and Indigenous observations along the roads for monitoring and understanding wildfires, including “zombie fires”. It also has practical implications for fire management collectively developed by authorities and local communities. 
    more » « less
  3. Nepal’s forest cover nearly doubled over the last three decades. While Community Forest (CF) management and agricultural abandonment are primary drivers of forest cover expansion, the contribution of afforestation on privately managed land is not well documented. We mapped forest cover change from 1988 through 2016 in 40 privately managed sites that transitioned from agriculture to forest and assessed how agricultural abandonment influenced private land management and afforestation. We used a mixed method analysis to integrate our 29- year Landsat satellite image-based record of annual forest cover with interview data on historical land cover and land use dynamics from 65 land managers in Bagmati Province. We find that privately managed land accounted for 37% of local forest cover gain, with mean forest area within private forests growing from 9% to 59%. Land managers identified two factors driving these gains on private land: implementation of CF man- agement in adjacent government forests and out-migration. These previously undocumented linkages between forest cover gain on private land and CF management merits further research in community forests and calls for greater policy and technical support for small-scale timber growers and rural households who rely on private forests for income generation. 
    more » « less
  4. Bossart, Janice L (Ed.)
    Variation in tropical forest management directly affects biodiversity and provisioning of ecosystem services on a global scale, thus it is necessary to compare forests under different conservation approaches such as protected areas, payments for ecosystem services programs (PES), and ecotourism, as well as forests lacking any formal conservation plan. To examine the effectiveness of specific conservation approaches, we examined differences in forest structure and tree recruitment, including canopy cover; canopy height; seedling, sapling, and adult tree density; and average and total diameter at breast height (DBH) across 78 plots in 18 forests across Costa Rica representing protected areas, private forests utilizing PES and/or ecotourism, and private forests not utilizing these economic incentives. The effectiveness of conservation approaches in providing suitable primate habitat was assessed by conducting broad primate census surveys across a subset of eight forests to determine species richness and group encounter rate of three primate species: mantled howler monkey (Alouatta palliata), Central American spider monkey (Ateles geoffroyi), and the white-faced capuchin monkey (Cebus imitator). Only canopy height was significantly different across the three approaches, with protected areas conserving the tallest and likely oldest forests. Canopy height was also significantly associated with the group encounter rate for both mantled howler and spider monkeys, but not for capuchins. Total group encounter rate for all three monkey species combined was higher in incentivized forests than in protected areas, with capuchin and howler monkey group encounter rates driving the trend. Group encounter rate for spider monkeys was higher in protected areas than in incentivized forests. Incentivized conservation (PES and ecotourism) and protected areas are paragons of land management practices that can lead to variation in forest structure across a landscape, which not only protect primate communities, but support the dietary ecologies of sympatric primate species. 
    more » « less
  5. Abstract The global forest carbon stocks represent the amount of carbon stored in woody vegetation and are important for quantifying the ability of the global forests to sequester atmospheric CO2and to provide ecosystem services (e.g., timber) under climate change. The forest ecosystem carbon pool estimates are highly variable and poorly quantified in areas lacking forest inventory estimates. Here, we compare and analyze aboveground biomass (AGB) estimates from five satellite‐based global data sets and nine dynamic global vegetation models (DVGMs). We find that across the data sets, mean AGB exhibits the largest variability around the tropical area. In addition, AGB shows a similar latitudinal trend but large variability among the data sets. Satellite‐based AGB estimates are lower than those simulated by DVGMs. The divergence among the satellite‐based AGB estimates can be driven by the methodology, input satellite products, and the forested areas used to estimate AGB. The modeled NPP, autotrophic respiration, and carbon allocation mostly drive the variability of AGB simulated by DGVMs. The future availability of a high‐quality global forest area map is anticipated to improve AGB estimate accuracy and to reduce the discrepancies among different satellite‐ and model‐based AGB estimates. We suggest the carbon‐modeling community reexamine the methodology used to estimate AGB and forested areas for a more robust global forest carbon stock estimation. 
    more » « less