skip to main content


Title: Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63).  more » « less
Award ID(s):
1810995
NSF-PAR ID:
10221884
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract STUDY QUESTION

    Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment?

    SUMMARY ANSWER

    Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images of spindles and the methods do not significantly impair embryo viability.

    WHAT IS KNOWN ALREADY

    Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment.

    STUDY DESIGN, SIZE, DURATION

    This study consisted of time-course experiments and control versus treatment experiments. We monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108 nonilluminated embryos were implanted into n = 9 mice.

    PARTICIPANTS/MATERIALS, SETTING, METHODS

    Experiments were performed in mouse embryos and oocytes. Samples were monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights (mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P < 0.05.

    MAIN RESULTS AND THE ROLE OF CHANCE

    Measured FLIM parameters were highly sensitive to metabolic changes due to both metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements) had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group).

    LIMITATIONS, REASONS FOR CAUTION

    The study was performed using a mouse model, so conclusions concerning sensitivity and safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could not preclude that some runt pups may have been eaten.

    WIDER IMPLICATIONS OF THE FINDINGS

    Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method’s safety, arguing for further studies of the clinical utility of these techniques.

    STUDY FUNDING/COMPETING INTEREST(S)

    Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by NSF grants DMR-0820484 and PFI-TT-1827309 and by NIH grant R01HD092550-01. T.S. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology grant (1308878). S.F. and S.A. were supported by NSF MRSEC DMR-1420382. Becker and Hickl GmbH sponsored the research with the loaning of equipment for FLIM. T.S. and D.N. are cofounders and shareholders of LuminOva, Inc., and co-hold patents (US20150346100A1 and US20170039415A1) for metabolic imaging methods. D.S. is on the scientific advisory board for Cooper Surgical and has stock options with LuminOva, Inc.

     
    more » « less
  2. Light-field fluorescence microscopy can record large-scale population activity of neurons expressing genetically-encoded fluorescent indicators within volumes of tissue. Conventional light-field microscopy (LFM) suffers from poor lateral resolution when using wide-field illumination. Here, we demonstrate a structured-illumination light-field microscopy (SI-LFM) modality that enhances spatial resolution over the imaging volume. This modality increases resolution by illuminating sample volume with grating patterns that are invariant over the axial direction. The size of the SI-LFM point-spread-function (PSF) was approximately half the size of the conventional LFM PSF when imaging fluorescent beads. SI-LFM also resolved fine spatial features in lens tissue samples and fixed mouse retina samples. Finally, SI-LFM reported neural activity with approximately three times the signal-to-noise ratio of conventional LFM when imaging live zebrafish expressing a genetically encoded calcium sensor.

     
    more » « less
  3. Two-photon excited fluorescence (TPEF) is a powerful technique that enables the examination of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle. Although previous intensity-based TPEF studies in non-human primates have successfully imaged several classes of retinal cells and elucidated aspects of both rod and cone photoreceptor function, fluorescence lifetime imaging (FLIM) of the retinal cells under light-dark visual cycle has yet to be fully exploited. Here we demonstrate a FLIM assay of photoreceptors and retinal pigment epithelium (RPE) that reveals key insights into retinal physiology and adaptation. We found that photoreceptor fluorescence lifetimes increase and decrease in sync with light and dark exposure, respectively. This is likely due to changes in all-trans-retinol and all-trans-retinal levels in the outer segments, mediated by phototransduction and visual cycle activity. During light exposure, RPE fluorescence lifetime was observed to increase steadily over time, as a result of all-trans-retinol accumulation during the visual cycle and decreasing metabolism caused by the lack of normal perfusion of the sample. Our system can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes under different conditions of light and dark exposure.

     
    more » « less
  4. The development of effective and safe agricultural treatments requires sub-cellular insight of the biochemical effects of treatments in living tissue in real-time. Industry-standard mass spectroscopic imaging lacks real-timein vivocapability. As an alternative, multiphoton fluorescence lifetime imaging microscopy (MPM-FLIM) allows for 3D sub-cellular quantitative metabolic imaging but is often limited to low frame rates. To resolve relatively fast effects (e.g., photosynthesis inhibiting treatments), high-frame-rate MPM-FLIM is needed. In this paper, we demonstrate and evaluate a high-speed MPM-FLIM system, “Instant FLIM”, as a time-resolved 3D sub-cellular molecular imaging system in highly scattering, living plant tissues. We demonstrate simultaneous imaging of cellular autofluorescence and crystalline agrochemical crystals within plant tissues. We further quantitatively investigate the herbicidal effects of two classes of agricultural herbicide treatments, photosystem II inhibiting herbicide (Basagran) and auxin-based herbicide (Arylex), and successfully demonstrate the capability of the MPM-FLIM system to measure biological changes over a short time with enhanced imaging speed. Results indicate that high-frame-rate 3D MPM-FLIM achieves the required fluorescence lifetime resolution, temporal resolution, and spatial resolution to be a useful tool in basic plant cellular biology research and agricultural treatment development.

     
    more » « less
  5. Summary Lay Description

    Structured‐illumination microscopy (SIM) is a high‐resolution light microscopy technique that allows imaging of fluorescence at a resolution about twice the classical diffraction limit. There are various ways that the illumination can be structured, but it is not obvious how the choice of illumination pattern affects the final image quality, especially in view of the noise. We present a detailed performance analysis considering two illumination techniques: sequential illumination with line‐gratings that are shifted and rotated during image acquisition and two‐dimensional (2D) illumination structures requiring only shift operations. Our analysis is based on analytical theory, supported by simulations of images considering noise. We also extend our analysis to a nonlinear variant of SIM, with which enhanced resolution can be achieved, limited only by noise. This includes nonlinear SIM based on the light‐induced switching of the fluorescent molecules between a bright and a dark state. We find sequential illumination with line‐gratings to be advantageous in ordinary (linear) SIM, whereas 2D patterns provides a slight signal‐to‐noise advantage under idealised conditions in nonlinear SIM if there is no nonswitching background.

     
    more » « less