Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event.
Three-Dimensional Inundation Mapping Using UAV Image Segmentation and Digital Surface Model
Flood occurrence is increasing due to the expansion of urbanization and extreme weather like hurricanes; hence, research on methods of inundation monitoring and mapping has increased to reduce the severe impacts of flood disasters. This research studies and compares two methods for inundation depth estimation using UAV images and topographic data. The methods consist of three main stages: (1) extracting flooded areas and create 2D inundation polygons using deep learning; (2) reconstructing 3D water surface using the polygons and topographic data; and (3) deriving a water depth map using the 3D reconstructed water surface and a pre-flood DEM. The two methods are different at reconstructing the 3D water surface (stage 2). The first method uses structure from motion (SfM) for creating a point cloud of the area from overlapping UAV images, and the water polygons resulted from stage 1 is applied for water point cloud classification. While the second method reconstructs the water surface by intersecting the water polygons and a pre-flood DEM created using the pre-flood LiDAR data. We evaluate the proposed methods for inundation depth mapping over the Town of Princeville during a flooding event during Hurricane Matthew. The methods are compared and validated using the USGS gauge more »
- Award ID(s):
- 1800768
- Publication Date:
- NSF-PAR ID:
- 10221937
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 10
- Issue:
- 3
- Page Range or eLocation-ID:
- 144
- ISSN:
- 2220-9964
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inundation mapping is a critical task for damage assessment, emergency management, and prioritizing relief efforts during a flooding event. Remote sensing has been an effective tool for interpreting and analyzing water bodies and detecting floods over the past decades. In recent years, deep learning algorithms such as convolutional neural networks (CNNs) have demonstrated promising performance for remote sensing image classification for many applications, including inundation mapping. Unlike conventional algorithms, deep learning can learn features automatically from large datasets. This research aims to compare and investigate the performance of two state-of-the-art methods for 3D inundation mapping: a deep learning-based image analysis and a Geomorphic Flood Index (GFI). The first method, deep learning image analysis involves three steps: 1) image classification to delineate flood boundaries, 2) integrate the flood boundaries and topography data to create a three-dimensional (3D) water surface, and 3) compare the 3D water surface with pre-flood topography to estimate floodwater depth. The second method, i.e., GFI, involves three phases: 1) calculate a river basin morphological information, such as river height (hr) and elevation difference (H), 2) calibrate and measure GFI to delineate flood boundaries, and 3) calculate the coefficient parameter ( α ), and correct the value of hrmore »
-
Among the different types of natural disasters, floods are the most devastating, widespread, and frequent. Floods account for approximately 30% of the total loss caused by natural disasters. Accurate flood-risk mapping is critical in reducing such damages by correctly predicting the extent of a flood when coupled with rain and stage gage data, supporting emergency-response planning, developing land use plans and regulations with regard to the construction of structures and infrastructures, and providing damage assessment in both spatial and temporal measurements. The reliability and accuracy of such flood assessment maps is dependent on the quality of the digital elevation model (DEM) in flood conditions. This study investigates the quality of an Unmanned Aerial Vehicle (UAV)-based DEM for spatial flood assessment mapping and evaluating the extent of a flood event in Princeville, North Carolina during Hurricane Matthew. The challenges and problems of on-demand DEM production during a flooding event were discussed. An accuracy analysis was performed by comparing the water surface extracted from the UAV-derived DEM with the water surface/stage obtained using the nearby US Geologic Survey (USGS) stream gauge station and LiDAR data.
-
Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understand the causes of inaccurate mapping information, we aim to demonstrate the advantages and limitations of these algorithms through a case study of the 2022 Madagascar flooding event. The HYDRAFloods toolbox was used to perform preprocessing, image correction, and automated flood water detection based on the state-of-the-art Edge Otsu, Bmax Otsu, and Fuzzy Otsu algorithms for the satellite images; the FwDET tool was deployed upon the cloud computing platform (Google Earth Engine) for rapid estimation of flood area/depth using the digital elevation model (DEM) data. Generated surface water maps from the respective techniques were evaluated qualitatively against each other and compared with a reference map produced by the European Union Copernicus Emergency Management Service (CEMS). The DEM-based maps show generally overestimated flood extents. The satellite-based maps show that Edge Otsu and Bmax Otsu methods are more likely to generate consistent results than those from Fuzzy Otsu. While the synthetic-aperture radar (SAR) data are typically favorable over the optical image under undesired weather conditions, mapsmore »
-
Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 mmore »