skip to main content


Title: Path Planning for Indoor UAV Using A* and Late Acceptance Hill Climbing Algorithms Utilizing Probabilistic Roadmap
The main objective of an unmanned aerial vehicle (UAV) path planning is to generate a flight path that links a start point to an endpoint in an indoor space avoiding obstacles.  Path planning is essential for many real-life applications such as an autonomous car, surveillance mission, farming robots, unmanned aerial vehicles package delivery, space exploration, and many others. To create an optimal path, we need to adopt a specific criterion to minimize the distance the UAV must travel such as the Euclidean distance. In this paper, we provide our initial idea of creating an optimal path for indoor UAV using both A* and the Late Acceptance Hill Climbing (LAHC) algorithms. We are adopting an indoor search environment with various complexity and utilize the Probabilistic Roadmap algorithm (PRM) as a search space for both algorithms. The basic idea following PRM is to generate random sample points in the space and search these points for an optimal path. The developed results show that the LAHC algorithm outperforms the A* algorithm.  more » « less
Award ID(s):
1757940
NSF-PAR ID:
10222262
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Engineering & Technology
Volume:
9
Issue:
4
ISSN:
2227-524X
Page Range / eLocation ID:
857; 862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method. 
    more » « less
  2. Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV.

     
    more » « less
  3. This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
    more » « less
  4. Unmanned aerial vehicles (UAVs), commonly known as drones, are becoming increasingly popular for various applications. Freely flying drones create highly dynamic environments, where conventional routing algorithms which rely on stationary network contact graphs fail to perform efficiently. Also, link establishment through exploring optimal paths using hello messages (as is used in AODV algorithm) deems extremely inefficient and costly for rapidly changing network topologies. In this paper, we present a distance-based greedy routing algorithm for UAV networks solely based on UAVs' local observations of their surrounding subnetwork. Thereby, neither a central decision maker nor a time consuming route setup and maintenance mechanism is required. To evaluate the proposed method, we derive an analytical bound for the expected number of hops that a packet traverses. Also, we find the expected end-to-end distance traveled by each packet as well as the probability of successful delivery. The simulation results verify the accuracy of the developed analytical expressions and show considerable improvement compared to centralized shortest path routing algorithms. 
    more » « less
  5. null (Ed.)
    Abstract A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn r2 ) time, where n is the number of vertices of all polygons and n ̓ is the number of vertices that are considered in constructing the path network (n ̓ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically. 
    more » « less