skip to main content

Title: Asymptotically optimal inspection planning via efficient near-optimal search on sampled roadmaps
Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.  more » « less
Award ID(s):
2008475 2038855
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The International Journal of Robotics Research
Page Range / eLocation ID:
150 to 175
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The inspection-planning problem calls for computing motions for a robot that allow it to inspect a set of points of interest (POIs) while considering plan quality (e.g., plan length). This problem has applications across many domains where robots can help with inspection, including infrastructure maintenance, construction, and surgery. Incremental Random Inspection-roadmap Search (IRIS) is an asymptotically-optimal inspection planner that was shown to compute higher-quality inspection plans orders of magnitudes faster than the prior state-of-the-art method. In this paper, we significantly accelerate the performance of IRIS to broaden its applicability to more challenging real-world applications. A key computational challenge that IRIS faces is effectively searching roadmaps for inspection plans—a procedure that dominates its running time. In this work, we show how to incorporate lazy edge-evaluation techniques into IRIS’s search algorithm and how to reuse search efforts when a roadmap undergoes local changes. These enhancements, which do not compromise IRIS’s asymptotic optimality, enable us to compute inspection plans much faster than the original IRIS. We apply IRIS with the enhancements to simulated bridge inspection and surgical inspection tasks and show that our new algorithm for some scenarios can compute similar-quality inspection plans 570× faster than prior work. 
    more » « less
  2. null (Ed.)
    Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective. 
    more » « less
  3. null (Ed.)
    Using sampling to estimate the connectivity of high-dimensional configuration spaces has been the theoretical underpinning for effective sampling-based motion planners. Typical strategies either build a roadmap, or a tree as the underlying search structure that connects sampled configurations, with a focus on guaranteeing completeness and optimality as the number of samples tends to infinity. Roadmap-based planners allow preprocessing the space, and can solve multiple kinematic motion planning problems, but need a steering function to connect pairwise-states. Such steering functions are difficult to define for kinodynamic systems, and limit the applicability of roadmaps to motion planning problems with dynamical systems. Recent advances in the analysis of single query tree-based planners has shown that forward search trees based on random propagations are asymptotically optimal. The current work leverages these recent results and proposes a multi-query framework for kinodynamic planning. Bundles of kinodynamic edges can be sampled to cover the state space before the query arrives. Then, given a motion planning query, the connectivity of the state space reachable from the start can be recovered from a forward search tree reasoning about a local neighborhood of the edge bundle from each tree node. The work demonstrates theoretically that considering any constant radial neighborhood during this process is sufficient to guarantee asymptotic optimality. Experimental validation in five and twelve dimensional simulated systems also highlights the ability of the proposed edge bundles to express high-quality kinodynamic solutions. Our approach consistently finds higher quality solutions compared to SST, and RRT, often with faster initial solution times. The strategy of sampling kinodynamic edges is demonstrated to be a promising new paradigm. 
    more » « less
  4. We present a learning-enabled Task and Motion Planning (TAMP) algorithm for solving mobile manipulation problems in environments with many articulated and movable obstacles. Our idea is to bias the search procedure of a traditional TAMP planner with a learned plan feasibility predictor. The core of our algorithm is PIGINet, a novel Transformer-based learning method that takes in a task plan, the goal, and the initial state, and predicts the probability of finding motion trajectories associated with the task plan. We integrate PIGINet within a TAMP planner that generates a diverse set of high-level task plans, sorts them by their predicted likelihood of feasibility, and refines them in that order. We evaluate the runtime of our TAMP algorithm on seven families of kitchen rearrangement problems, comparing its performance to that of non-learning baselines. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80\% on problems with small state spaces and 10\%-50\% on larger ones, after being trained on only 150-600 problems. Finally, it also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects. 
    more » « less
  5. null (Ed.)
    In order to solve complex, long-horizon tasks, intelligent robots need to carry out high-level, abstract planning and reasoning in conjunction with motion planning. However, abstract models are typically lossy and plans or policies computed using them can be unexecutable. These problems are exacerbated in stochastic situations where the robot needs to reason about, and plan for multiple contingencies. We present a new approach for integrated task and motion planning in stochastic settings. In contrast to prior work in this direction, we show that our approach can effectively compute integrated task and motion policies whose branching structures encoding agent behaviors handling multiple execution-time contingencies. We prove that our algorithm is probabilistically complete and can compute feasible solution policies in an anytime fashion so that the probability of encountering an unresolved contingency decreases over time. Empirical results on a set of challenging problems show the utility and scope of our methods. 
    more » « less