skip to main content


Title: Impact of short-read sequencing on the misassembly of a plant genome
Abstract Background Availability of plant genome sequences has led to significant advances. However, with few exceptions, the great majority of existing genome assemblies are derived from short read sequencing technologies with highly uneven read coverages indicative of sequencing and assembly issues that could significantly impact any downstream analysis of plant genomes. In tomato for example, 0.6% (5.1 Mb) and 9.7% (79.6 Mb) of short-read based assembly had significantly higher and lower coverage compared to background, respectively. Results To understand what the causes may be for such uneven coverage, we first established machine learning models capable of predicting genomic regions with variable coverages and found that high coverage regions tend to have higher simple sequence repeat and tandem gene densities compared to background regions. To determine if the high coverage regions were misassembled, we examined a recently available tomato long-read based assembly and found that 27.8% (1.41 Mb) of high coverage regions were potentially misassembled of duplicate sequences, compared to 1.4% in background regions. In addition, using a predictive model that can distinguish correctly and incorrectly assembled high coverage regions, we found that misassembled, high coverage regions tend to be flanked by simple sequence repeats, pseudogenes, and transposon elements. Conclusions Our study provides insights on the causes of variable coverage regions and a quantitative assessment of factors contributing to plant genome misassembly when using short reads and the generality of these causes and factors should be tested further in other species.  more » « less
Award ID(s):
1655386 1546617
NSF-PAR ID:
10222405
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
BMC Genomics
Volume:
22
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enablingde novoassembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes.

    Methods

    Here we evaluatede novoassembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes.

    Results

    Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes.

    Conclusions

    PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improvedde novogenome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

     
    more » « less
  2. Abstract

    Vitis riparia, a critically important Native American grapevine species, is used globally in rootstock and scion breeding and contributed to the recovery of the French wine industry during the mid-19th century phylloxera epidemic. This species has abiotic and biotic stress tolerance and the largest natural geographic distribution of the North American grapevine species. Here we report an Illumina short-read 369X coverage, draft de novo heterozygous genome sequence ofV. ripariaMichx. ‘Manitoba 37’ with the size of ~495 Mb for 69,616 scaffolds and a N50 length of 518,740 bp. Using RNAseq data, 40,019 coding sequences were predicted and annotated. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models found 96% of the complete BUSCOs in this assembly. The assembly continuity and completeness were further validated usingV. ripariaESTs, BACs, and three de novo transcriptome assemblies of three differentV. ripariagenotypes resulting in >98% of respective sequences/transcripts mapping with this assembly. Alignment of theV. ripariaassembly and predicted CDS with the latestV. vinifera‘PN40024’ CDS and genome assembly showed 99% CDS alignment and a high degree of synteny. An analysis of plant transcription factors indicates a high degree of homology with theV. viniferatranscription factors. QTL mapping toV. riparia‘Manitoba 37’ andV. viniferaPN40024 has identified genetic relationships to phenotypic variation between species. This assembly provides reference sequences, gene models for marker development and understandingV. riparia’s genetic contributions in grape breeding and research.

     
    more » « less
  3. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implemented a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx. 
    more » « less
  4. Abstract Long-read sequencing technology enables significant progress in de novo genome assembly. However, the high error rate and the wide error distribution of raw reads result in a large number of errors in the assembly. Polishing is a procedure to fix errors in the draft assembly and improve the reliability of genomic analysis. However, existing methods treat all the regions of the assembly equally while there are fundamental differences between the error distributions of these regions. How to achieve very high accuracy in genome assembly is still a challenging problem. Motivated by the uneven errors in different regions of the assembly, we propose a novel polishing workflow named BlockPolish. In this method, we divide contigs into blocks with low complexity and high complexity according to statistics of aligned nucleotide bases. Multiple sequence alignment is applied to realign raw reads in complex blocks and optimize the alignment result. Due to the different distributions of error rates in trivial and complex blocks, two multitask bidirectional Long short-term memory (LSTM) networks are proposed to predict the consensus sequences. In the whole-genome assemblies of NA12878 assembled by Wtdbg2 and Flye using Nanopore data, BlockPolish has a higher polishing accuracy than other state-of-the-arts including Racon, Medaka and MarginPolish & HELEN. In all assemblies, errors are predominantly indels and BlockPolish has a good performance in correcting them. In addition to the Nanopore assemblies, we further demonstrate that BlockPolish can also reduce the errors in the PacBio assemblies. The source code of BlockPolish is freely available on Github (https://github.com/huangnengCSU/BlockPolish). 
    more » « less
  5. null (Ed.)
    The blue crab, Callinectes sapidus (Rathbun, 1896) is an economically, culturally, and ecologically important species found across the temperate and tropical North and South American Atlantic coast. A reference genome will enable research for this high-value species. Initial assembly combined 200× coverage Illumina paired-end reads, a 60× 8 kb mate-paired library, and 50× PacBio data using the MaSuRCA assembler resulting in a 985 Mb assembly with a scaffold N50 of 153 kb. Dovetail Chicago and HiC sequencing with the 3d DNA assembler and Juicebox assembly tools were then used for chromosome scaffolding. The 50 largest scaffolds span 810 Mb are 1.5–37 Mb long and have a repeat content of 36%. The 190 Mb unplaced sequence is in 3921 sequences over 10 kb with a repeat content of 68%. The final assembly N50 is 18.9 Mb for scaffolds and 9317 bases for contigs. Of arthropod BUSCO, ∼88% (888/1013) were complete and single copies. Using 309 million RNAseq read pairs from 12 different tissues and developmental stages, 25,249 protein-coding genes were predicted. Between C. sapidus and Portunus trituberculatus genomes, 41 of 50 large scaffolds had high nucleotide identity and protein-coding synteny, but 9 scaffolds in both assemblies were not clear matches. The protein-coding genes included 9423 one-to-one putative orthologs, of which 7165 were syntenic between the two crab species. Overall, the two crab genome assemblies show strong similarities at the nucleotide, protein, and chromosome level and verify the blue crab genome as an excellent reference for this important seafood species. 
    more » « less