skip to main content


Title: Privacy for All: Ensuring Fair and Equitable Privacy Protections
In this position paper, we argue for applying recent research on ensuring sociotechnical systems are fair and non-discriminatory to the privacy protections those systems may provide. Privacy literature seldom considers whether a proposed privacy scheme protects all persons uniformly, irrespective of membership in protected classes or particular risk in the face of privacy failure. Just as algorithmic decision-making systems may have discriminatory outcomes even without explicit or deliberate discrimination, so also privacy regimes may disproportionately fail to protect vulnerable members of their target population, resulting in disparate impact with respect to the effectiveness of privacy protections.We propose a research agenda that will illuminate this issue, along with related issues in the intersection of fairness and privacy, and present case studies that show how the outcomes of this research may change existing privacy and fairness research. We believe it is important to ensure that technologies and policies intended to protect the users and subjects of information systems provide such protection in an equitable fashion.  more » « less
Award ID(s):
1657774
NSF-PAR ID:
10222637
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
1st Conference on Fairness, Accountability and Transparency
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse today. The opaque nature of the algorithms these platforms use to curate content raises societal questions. Prior studies have used black-box methods led by experts or collaborative audits driven by everyday users to show that these algorithms can lead to biased or discriminatory outcomes. However, existing auditing methods face fundamental limitations because they function independent of the platforms. Concerns of potential harmful outcomes have prompted proposal of legislation in both the U.S. and the E.U. to mandate a new form of auditing where vetted external researchers get privileged access to social media platforms. Unfortunately, to date there have been no concrete technical proposals to provide such auditing, because auditing at scale risks disclosure of users' private data and platforms' proprietary algorithms. We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation. The first contribution of our work is to enumerate the challenges and the limitations of existing auditing methods to implement these policies at scale. Second, we suggest that limited, privileged access to relevance estimators is the key to enabling generalizable platform-supported auditing of social media platforms by external researchers. Third, we show platform-supported auditing need not risk user privacy nor disclosure of platforms' business interests by proposing an auditing framework that protects against these risks. For a particular fairness metric, we show that ensuring privacy imposes only a small constant factor increase (6.34x as an upper bound, and 4× for typical parameters) in the number of samples required for accurate auditing. Our technical contributions, combined with ongoing legal and policy efforts, can enable public oversight into how social media platforms affect individuals and society by moving past the privacy-vs-transparency hurdle. 
    more » « less
  2. Data sets and statistics about groups of individuals are increasingly collected and released, feeding many optimization and learning algorithms. In many cases, the released data contain sensitive information whose privacy is strictly regulated. For example, in the U.S., the census data is regulated under Title 13, which requires that no individual be identified from any data released by the Census Bureau. In Europe, data release is regulated according to the General Data Protection Regulation, which addresses the control and transfer of personal data. Differential privacy has emerged as the de-facto standard to protect data privacy. In a nutshell, differentially private algorithms protect an individual’s data by injecting random noise into the output of a computation that involves such data. While this process ensures privacy, it also impacts the quality of data analysis, and, when private data sets are used as inputs to complex machine learning or optimization tasks, they may produce results that are fundamentally different from those obtained on the original data and even rise unintended bias and fairness concerns. In this talk, I will first focus on the challenge of releasing privacy-preserving data sets for complex data analysis tasks. I will introduce the notion of Constrained-based Differential Privacy (C-DP), which allows casting the data release problem to an optimization problem whose goal is to preserve the salient features of the original data. I will review several applications of C-DP in the context of very large hierarchical census data, data streams, energy systems, and in the design of federated data-sharing protocols. Next, I will discuss how errors induced by differential privacy algorithms may propagate within a decision problem causing biases and fairness issues. This is particularly important as privacy-preserving data is often used for critical decision processes, including the allocation of funds and benefits to states and jurisdictions, which ideally should be fair and unbiased. Finally, I will conclude with a roadmap to future work and some open questions. 
    more » « less
  3. null (Ed.)
    A critical concern in data-driven decision making is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the sensitive attributes is essential, while, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals’ sensitive information while also allowing it to learn non-discriminatory predictors. The method relies on the notion of differential privacy and the use of Lagrangian duality to design neural networks that can accommodate fairness constraints while guaranteeing the privacy of sensitive attributes. The paper analyses the tension between accuracy, privacy, and fairness and the experimental evaluation illustrates the benefits of the proposed model on several prediction tasks. 
    more » « less
  4. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  5. Data too sensitive to be "open" for analysis and re-purposing typically remains "closed" as proprietary information. This dichotomy undermines efforts to make algorithmic systems more fair, transparent, and accountable. Access to proprietary data in particular is needed by government agencies to enforce policy, researchers to evaluate methods, and the public to hold agencies accountable; all of these needs must be met while preserving individual privacy and firm competitiveness. In this paper, we describe an integrated legal-technical approach provided by a third-party public-private data trust designed to balance these competing interests. Basic membership allows firms and agencies to enable low-risk access to data for compliance reporting and core methods research, while modular data sharing agreements support a wide array of projects and use cases. Unless specifically stated otherwise in an agreement, all data access is initially provided to end users through customized synthetic datasets that offer a) strong privacy guarantees, b) removal of signals that could expose competitive advantage, and c) removal of biases that could reinforce discriminatory policies, all while maintaining fidelity to the original data. We find that using synthetic data in conjunction with strong legal protections over raw data strikes a balance between transparency, proprietorship, privacy, and research objectives. This legal-technical framework can form the basis for data trusts in a variety of contexts. 
    more » « less