skip to main content


Title: Arctic Cyclone Activity and the Beaufort High
Abstract The Beaufort high (BH) and its accompanying anticyclonic winds drive the Arctic Ocean’s Beaufort Gyre, the major freshwater reservoir of the Arctic Ocean. The Beaufort Gyre circulation and its capacity to accumulate or release freshwater rely on the BH intensity. The migration of Nordic seas cyclones into the Arctic has been hypothesized to moderate the strength of the BH. We explore this hypothesis by analyzing reanalysis sea level pressure fields to characterize the BH and identify and track cyclones north of 60°N during 1948–2019. A cluster analysis of Nordic seas cyclone trajectories reveals a western pathway (through the Arctic interior) associated with a relatively weak BH and an eastern pathway (along the Arctic periphery) associated with a relatively strong BH. Furthermore, we construct cyclone activity indices (CAIs) in the Arctic and Nordic seas that take into account multiple cyclone parameters (number, strength, and duration). There are significant correlations between the BH and the CAIs in the Arctic and Nordic seas during 1948–2019, with anomalously strong cyclone activity related to an anomalously weak BH, and vice versa. We show how the Arctic and Nordic seas CAIs experienced a regime shift toward increased cyclone activity between the first four decades analyzed (1948–88) and the most recent three decades (1989–2019). Over the same two time periods, the BH exhibits a weakening. Increased cyclone activity and an accompanying weakening of the BH may be consistent with expectations in a warming Arctic and have implications for Beaufort Gyre dynamics and freshwater.  more » « less
Award ID(s):
1950077 1949881
NSF-PAR ID:
10222658
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
34
Issue:
10
ISSN:
0894-8755
Page Range / eLocation ID:
4119 to 4127
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Data collected by two buoy arrays that operated during the ice seasons of 2014/2015 and 2016/2017 were used to characterize annual cycles of ice motion and deformation in the western Arctic Ocean. An anomalously strong and weak Beaufort Gyre in 2014/2015 and 2016/2017 induced generally anticyclonic and cyclonic sea ice drift during 2014/2015 and 2016/2017, respectively. Cyclonic ice motion resulted in higher contributions of ice divergence to total ice deformation in 2016/2017 than in 2014/2015. In 2014, the autumn ice concentration and multiyear ice coverage were higher than in 2016; consequently, the response of ice motion to wind forcing was weak, and less ice deformation was observed in autumn 2014. During the autumn‐winter transition, the ice‐wind speed ratio, ice deformation rate and its spatial and temporal scaling exponents, and localization of ice deformation decreased markedly in both 2014/2015 and 2016/2017 as a result of freeze‐up and consolidation of ice floes. Such dynamic behavior was maintained through to spring with the further thickening of ice cover. Ice deformation increased due to weakened ice strength as summer approached. The amplitude of the annual cycle of ice deformation rate in the western Arctic Ocean in 2014/2015 and especially in 2016/2017 was larger than that observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) program in 1997/1998. We attribute this phenomenon to ice loss during the recent summers, especially of thick multiyear ice.

     
    more » « less
  2. null (Ed.)
    Abstract The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of two years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas. 
    more » « less
  3. Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1 Sv (sverdrup,1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and hasthe amplitude of the seasonal variation close to 1 Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70 % of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95 %confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.

     
    more » « less
  4. null (Ed.)
    This article sets the near-surface meteorological conditions during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the context of the interannual variability and extremes within the past 4 decades. Hourly ERA5 reanalysis data for the Polarstern trajectory for 1979–2020 are analyzed. The conditions were relatively normal given that they were mostly within the interquartile range of the preceding 4 decades. Nevertheless, some anomalous and even record-breaking conditions did occur, particularly during synoptic events. Extreme cases of warm, moist air transported from the northern North Atlantic or northwestern Siberia into the Arctic were identified from late fall until early spring. Daily temperature and total column water vapor were classified as being among the top-ranking warmest/wettest days or even record-breaking based on the full record. Associated with this, the longwave radiative fluxes at the surface were extremely anomalous for these winter cases. The winter and spring period was characterized by more frequent storm events and median cyclone intensity ranking in the top 25th percentile of the full record. During summer, near melting point conditions were more than a month longer than usual, and the July and August 2020 mean conditions were the all-time warmest and wettest. These record conditions near the Polarstern were embedded in large positive temperature and moisture anomalies over the whole central Arctic. In contrast, unusually cold conditions occurred during the beginning of November 2019 and in early March 2020, related to the Arctic Oscillation. In March, this was linked with anomalously strong and persistent northerly winds associated with frequent cyclone occurrence to the southeast of the Polarstern. 
    more » « less
  5. Abstract

    The Beaufort Gyre is a key feature of the Arctic Ocean, acting as a reservoir for freshwater in the region. Depending on whether the prevailing atmospheric circulation in the Arctic is anticyclonic or cyclonic, either a net accumulation or release of freshwater occurs. The sources of freshwater to the Arctic Ocean are well established and include contributions from the North American and Eurasian Rivers, the Bering Strait Pacific water inflow, sea ice meltwater, and precipitation, but their contribution to the Beaufort Gyre freshwater accumulation varies with changes in the atmospheric circulation. Here we use a Lagrangian backward tracking technique in conjunction with the 1/12‐degree resolution Nucleus for European Modelling of the Ocean model to investigate how sources of freshwater to the Beaufort Gyre have changed in recent decades, focusing on increase in the Pacific water content in the gyre between the late 1980s and early 2000s. Using empirical orthogonal functions we analyze the change in the Arctic oceanic circulation that occurred between the 1980s and 2000s. We highlight a “waiting room” advective pathway that was present in the 1980s and provide evidence that this pathway was caused by a shift in the center of Ekman transport convergence in the Arctic. We discuss the role of these changes as a contributing factor to changes in the stratification, and hence potentially the biology, of the Beaufort Gyre region.

     
    more » « less