skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Annually resolved sediments in the classic Clarkia lacustrine deposits (Idaho, USA) during the middle Miocene Climate Optimum
The world-renowned Miocene Clarkia paleolake in northern Idaho (USA) is closely associated with Columbia River Basalt Group volcanism. The flood basalt dammed a local drainage system to form the paleolake, which preserved a plant fossil Lagerstätte in its deposits. However, the precise age and temporal duration of the lake remain unsettled. We present the first unequivocal U-Pb zircon ages from interbedded volcanic ashes at the P-33 type location, constraining the deposition to 15.78 ± 0.039 Ma. Using micro–X-ray fluorescence and petrographic and spectral analyses, we establish the annual characteristics of laminations throughout the stratigraphic profile using the distribution of elemental ratios, mineral assemblages, and grain-size structures, as well as organic and fossil contents. Consequently, the ~7.5-m-thick varved deposit at the type location P-33 represents ~840 yr of deposition, coincident with the end of the main phase of Columbia River Basalt Group eruptions during the Miocene Climate Optimum. The timing and temporal resolution of the deposit offer a unique opportunity to study climate change in unprecedented detail during global warming associated with carbon-cycle perturbations.  more » « less
Award ID(s):
1806015 1804511
PAR ID:
10222901
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The US Pacific Northwest (PNW), including Washington, Oregon, and Idaho, hosts an extensive suite of Oligocene–Miocene fossil plant sites that have the potential to showcase terrestrial vegetation and climate response to several pronounced environmental perturbations. These include the Mid-Miocene Climatic Optimum (MMCO; ca. 17-14 Ma), the Middle Miocene Climatic Transition (MMCT; ca. 14-13 Ma), and the eruption of the Columbia River Basalts (~95% of its volume 16.7 to 15.9 Ma). This collaborative study focuses on 18 PNW fossil plant sites spanning ca. 32 to 10 Ma, many of which have extensive pre-existing macrofossil collections. First, we radiometrically date interbedded tuffs at these sites to establish a high-resolution temporal framework, using U-Pb/CA-ID-TIMS. We present new dates for the Clarkia/Emerald Creek, Alvord Creek, Juliaetta, Pickett Creek, Whitebird, and Trout Creek fossil sites. Within this temporal framework, we are: 1) documenting regional climate change in the PNW during the MMCO and MMCT using paleobotany-based paleoclimate proxies, and 2) providing an integrated perspective on the response of plant communities to these mid-Miocene environmental changes by combining macrofossil, palynomorph, and phytolith evidence. Taken together, these data will provide a regionally-comprehensive perspective on the sensitivity of terrestrial vegetation and climate to global climatic events known more extensively from marine records. 
    more » « less
  2. Scientific ocean drilling cores recovered years ago (legacy cores), especially as recovered by rotary drilling, commonly show incomplete recovery and core disturbance. We present a novel method to date such cores by presenting the first high-precision U-Pb zircon ages targeting the duration of the Miocene Climate Optimum (MCO; ca. 17−14 Ma) from volcanic ashes at Ocean Drilling Program Site 1000 (on the Nicaragua Rise in the Caribbean Sea). We place these ages within a newly developed framework to address incomplete core recovery and use them to calibrate a high-resolution bulk carbonate δ13C and δ18O record. Our Site 1000 ages show that volcanism of the Columbia River Basalt Group (CRBG) large igneous province was coincident with the interval of greatest sustained MCO warmth at this site. However, if the CRBG were the primary driver of the MCO, our chronology may allow for outgassing preceding volcanism as a major source of CO2. We thus document a promising new way to obtain highly resolved, accurate, and precise numerical age models for legacy deep-sea sediment cores that does not depend on correlation to other records. 
    more » « less
  3. Abstract The Bengal Basin preserves the erosional signals of coupled tectonic‐climatic change during late Cenozoic development of the Himalayan orogen, yet regional correlation and interpretation of these signals remains incomplete. We present a new geologic map of fluvial‐deltaic deposits of the Indo‐Burman Ranges (IBR), five detrital zircon fission track analyses, and twelve high‐n detrital zircon U‐Pb age distributions (dzUPb) from the Barail (late Eocene–early Miocene), Surma (early–late Miocene), and Tipam (late Miocene–Pliocene) Groups of the ancestral Brahmaputra delta. We use dzUPb statistical tests to correlate the IBR units with equivalent age strata throughout the Bengal Basin. An influx of trans‐Himalayan sediment and the first appearance of ∼50 Ma grains of the Gangdese batholith in the lower Surma Group (∼18–15 Ma) records the early Miocene arrival of the ancestral Brahmaputra delta to the Bengal Basin. Contributions from Himalayan sources systematically decrease up section through the late Miocene as the contribution of Trans‐Himalayan Arc sources increases. The Miocene (∼18–8 Ma) deposition of the Surma Group records upstream expansion of the ancestral Brahmaputra River into southeastern Tibet. Late Miocene (<8 Ma) progradation of the fluvial part of the delta (Tipam Group) routed trans‐Himalayan sediment over the shelf edge to the Nicobar Fan. We propose that Miocene progradation of the ancestral Brahmaputra delta reflects increasing rates of erosion and sea level fall during intensification of the South Asian Monsoon after the Miocene Climate Optimum, contemporaneous with a pulse of tectonic uplift of the Himalayan hinterland and Tibet. 
    more » « less
  4. Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures. 
    more » « less
  5. Huang, Huasheng (Ed.)
    The fossil record of the U.S. Pacific Northwest preserves many Middle Miocene floras with potential for revealing long-term climate-vegetation dynamics during the Miocene Climatic Optimum. However, the possibility of strong, eccentricity-paced climate oscillations and concurrent, intense volcanism may obscure the signature of prevailing, long-term Miocene climate change. To test the hypothesis that volcanic disturbance drove Middle Miocene vegetation dynamics, high-resolution, stratigraphic pollen records and other paleobotanical data from nine localities of the Sucker Creek Formation were combined with sedimentological and geochemical evidence of disturbance within an updated chronostratigraphic framework based on new U-Pb zircon ages from tuffs. The new ages establish a refined, minimum temporal extent of the Sucker Creek Formation, ~15.8 to ~14.8 Ma, and greatly revise the local and regional chronostratigraphic correlations of its dispersed outcrop belt. Our paleoecological analysis at one ~15.52 Ma locality reveals two abrupt shifts in pollen spectra coinciding with the deposition of thick ash-flow tuffs, wherein vegetation dominated by Cupressaceae/Taxaceae, probably representing aGlyptostrobus oregonensisswamp, and upland conifers was supplanted by early-successional forests with abundantAlnusandBetula. Another ephemeral shift from Cupressaceae/Taxaceae swamp taxa in favor of upland conifersPinusandTsugacorrelates with a shift from low-Ti shale to high-Ti claystone, suggesting a link between altered surface hydrology and vegetation. In total, three rapid vegetation shifts coincide with ash-flow tuffs and are attributed to volcanic disturbance. Longer-term variability between localities, spanning ~1 Myr of the Miocene Climatic Optimum, is chiefly attributed to eccentricity-paced climate change. Overall, Succor Creek plant associations changed frequently over ≤105years timespans, reminiscent of Quaternary vegetation records. Succor Creek stratigraphic palynology suggests that numerous and extensive collection of stratigraphically controlled samples is necessary to understand broader vegetation trends through time. 
    more » « less