skip to main content


Title: Recurring lacustrine depositional successions in the Wilkins Peak Member, Green River Formation: The basin-center evaporite perspective
Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures.  more » « less
Award ID(s):
1813278
NSF-PAR ID:
10438625
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geosites
Volume:
50
ISSN:
0375-8176
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It has long been recognized that lakes can bury large amounts of organic carbon (CORG) in their sediment, with important consequences for conventional and unconventional petroleum resources and potentially for the global carbon cycle. The detailed distribution of lacustrine organic carbon through space and time is important to understanding its commercial and climatic implications, but has seldom been documented in detail. The Green River Formation offers a unique opportunity to improve this understanding, due to extensive Fischer assay analyses of its oil generative potential and to recently published radioisotopic age analyses of intercalat ed volcanic tuffs. Fischer assay analyses reveal distinctly different patterns of organic matter enrichment that correlate with different lacustrine facies associations. Histograms of oil generative potential for evaporative facies of the Wilkins Peak Member exhibit an approximately exponential distribution. This pattern is interpret ed to result from episodic expansion and contraction of Eocene Lake Gosiute across a low-gradient basin floor that experienced frequent desiccation. In contrast, histograms for fluctuating profundal facies of the upper Rife Bed of the Tipton Member and the lower LaClede Bed of the Laney Member exhibit an approximately normal or log normal distribution, with modes as high as 16–18 gallons per ton. This pattern is interpreted to reflect generally deeper conditions when the lake often intersected basin-bounding uplifts. Within the Bridger basin, burial of CORG was greatest in the south during initial Wilkins Peak Member deposition, reflecting greater rates of accommodation near the Uinta uplift. The locus of CORG burial shifted north during upper Wilkins Peak Member deposition, coincident with a decrease in differential accommodation. CORG burial during deposition of the upper Rife and lower LaClede Beds was greatest in the southeast, due either to greater accommodation or localized influx of river-borne nutrients. Average CORG burial fluxes are consistently ~4-5 g/m2 yr for each interval, which is an order of magnitude less than fluxes reported for small Holocene lakes in the northern hemisphere. Maximum rates of CORG burial during deposition of organic-rich mudstone beds (oil shale) were likely similar to Holocene lakes however. Deposition of carbonate minerals in the Bridger basin resulted in additional, inorganic carbon burial. Overall it appears that carbon burial by Eocene lakes could have influenced the global carbon cycle, but only if synchronized across multiple lake systems. 
    more » « less
  2. Abstract

    Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and wherepCO2is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.

     
    more » « less
  3. null (Ed.)
    Searles Lake, California, was a saline-alkaline lake that deposited >25 non-clastic minerals that record the history of lake chemistry and regional climate. Here, the mineralogy and petrography from the late Pleistocene/Holocene (32−6 ka) portion of a new Searles Lake sediment core, SLAPP-SRLS17, is combined with thermodynamic models to determine the geochemical and paleoclimate conditions required to produce the observed mineral phases, sequences, and abundances. The models reveal that the primary precipitates formed by open system (i.e., fractional crystallization), whereas the early diagenetic salts formed by salinity-driven closed system back-reactions (i.e., equilibrium crystallization). For core SLAPP-SRLS17, the defining evaporite sequence trona → burkeite → halite indicates brine temperatures within a 20−29 °C range, implying thermally insulating lake depths >10 m during salt deposition. Evaporite phases reflect lake water pCO2 consistent with contemporaneous atmospheric values of ∼190−270 ppmv. However, anomalous layers of nahcolite and thenardite indicate pulses of pCO2 > 700−800 ppm, likely due to variable CO2 injection along faults. Core sedimentology indicates that Searles Lake was continuously perennial between 32 ka and 6 ka such that evaporite units reflect periods of net evaporation but never complete desiccation. Model simulations indicate that cycles of partial evaporation and dilution strongly influence long-term brine evolution by amassing certain species, particularly Cl−, that only occur in late-stage soluble salts. A model incorporating long-term brine dynamics corrects previous mass-balance anomalies and shows that the late Pleistocene/Holocene (32−6 ka) salts are partially inherited from the solutes introduced into earlier lakes going back at least 150 ka. 
    more » « less
  4. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates. 
    more » « less
  5. null (Ed.)
    ABSTRACT The Green River Formation preserves an extraordinary archive of terrestrial paleoclimate during the Early Eocene Climatic Optimum (EECO; ∼ 53–50 Ma), expressing multiple scales of sedimentary cyclicity previously interpreted to reflect annual to Milankovitch-scale forcing. Here we utilize X-ray fluorescence (XRF) core scanning and micro X-ray fluorescence (micro-XRF) scanning in combination with radioisotopic age data to evaluate a rock core record of laminated oil shale and carbonate mudstone from Utah's Uinta Basin, with the parallel objectives of elucidating the paleo-environmental significance of the sedimentary rhythms, testing a range of forcing hypotheses, and evaluating potential linkages between high- and low-frequency forcing. This new assessment reveals that the ∼ 100-μm-scale laminae—the most fundamental rhythm of the Green River Formation—are most strongly expressed by variations in abundance of iron and sulfur. We propose that these variations reflect changes in redox state, consistent with annual stratification of the lake. In contrast to previous studies, no support was found for ENSO or sunspot cycles. However, millimeter- to centimeter-scale rhythms—temporally constrained to the decadal to centennial scale—are strongly expressed as alternations in the abundance of silicate- versus carbonate-associated elements (e.g., Al and Si vs. Ca), suggesting changes in precipitation and sediment delivery to the paleo-lake. Variations also occur at the meter scale, defining an approximate 4 m cycle interpreted to reflect precession. We also identify punctuated intervals, associated principally with one phase of the proposed precession cycle, where Si disconnects from the silicate input. We propose an alternative authigenic or biogenic Si source for these intervals, which reflects periods of enhanced productivity. This result reveals how long-term astronomical forcings can influence short-term processes, yielding insight into decadal- to millennial-scale terrestrial climate change in the Eocene greenhouse earth. 
    more » « less