skip to main content

Title: Polistes versicolor (Hymenoptera: Vespidae), an Introduced Wasp in the Galapagos Islands: Its Life Cycle and Ecological Impact
Abstract The yellow paper wasp, Polistes versicolor (Olivier) was first recorded in the Galapagos archipelago in 1988. Its life cycle and ecological impacts were studied on two islands 11 yr after it was first discovered. This invasive wasp adapted quickly and was found in most environments. Colony counts and adult wasp monitoring showed a strong preference for drier habitats. Nest activities were seasonally synchronized, nest building followed the rains in the hot season (typically January–May), when insect prey increases, and peaked as temperature and rains started to decline. Next, the number of adult wasps peaked during the cool season when there is barely any rain in the drier zones. In Galapagos, almost half of the prey loads of P. versicolor were lepidopteran larvae, but wasps also carried spiders, beetles, and flies back to the colonies. An estimated average of 329 mg of fresh insect prey was consumed per day for an average colony of 120–150 wasp larvae. The wasps preyed upon native and introduced insects, but likely also affect insectivorous vertebrates as competitors for food. Wasps may also compete with native pollinators as they regularly visited flowers to collect nectar, and have been recorded visiting at least 93 plant species more » in Galapagos, including 66 endemic and native plants. Colonies were attacked by a predatory moth, Taygete sphecophila (Meyrick) (Lepidoptera: Autostichidae), but colony development was not arrested. High wasp numbers also affect the activities of residents and tourists. A management program for this invasive species in the archipelago is essential. « less
; ; ; ; ;
Ross, Darrell
Award ID(s):
Publication Date:
Journal Name:
Environmental Entomology
Page Range or eLocation-ID:
1480 to 1491
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica , a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity tomore »feral honeybee ( Apis mellifera ) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.« less
  2. Schilder, Rudolf (Ed.)
    Abstract Parasitoids comprise a speciose insect group, displaying a wide array of life history strategies. In the Pacific Northwest of the United States, the tephritid fruit flies Rhagoletis tabellaria (Fitch) and Rhagoletis indifferens Curran infest red osier dogwood, Cornus sericea L. (Cornaceae), and bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton (Rosaceae), respectively. The flies are parasitized by different braconid wasps at different life stages; Utetes tabellariae (Fischer) oviposits into R. tabellaria eggs, whereas Diachasma muliebre (Muesebeck) oviposits into R. indifferens larvae feeding in cherries. Because Rhagoletis only have one major generation a year and the wasps attack temporally distinct fly life stages, we predicted that eclosion times of U. tabellariae should more closely follow that of its host than the larval-attacking D. muliebre. As predicted, U. tabellariae eclosed on average 6.0–12.5 d later than R. tabellaria, whereas D. muliebre eclosed on average 32.1 d after R. indifferens. Unexpectedly, however, longer chill duration differentially affected the systems; longer overwinters minimally influenced eclosion times of R. tabellaria and U. tabellariae but caused earlier eclosion of both R. indifferens and D. muliebre. Results imply that in temperate regions, diapause timing in braconid wasps evolves in response to both host life stage attackedmore »and fly eclosion characteristics, possibly reflecting differential effects of winter on host plant fruiting phenology. Differences in phenological sensitivity of the lower host plant trophic level to variation in environmental conditions may have cascading effects, sequentially and differentially affecting eclosion times in higher frugivore (fly) and parasitoid (wasp) trophic levels.« less
  3. Abstract

    Commercialized bumble bees (Bombus) are primary pollinators of several crops within open field and greenhouse settings. However, the common eastern bumble bee (Bombus impatiens Cresson, 1863) is the only species widely available for purchase in North America. As an eastern species, concerns have been expressed over their transportation outside of their native range. Therefore, there is a need to identify regionally appropriate candidates for commercial crop pollination services, especially in the western U.S.A. In this study, we evaluated the commercialization potential of brown-belted bumble bees (Bombus griseocollis De Geer, 1773), a broadly distributed species throughout the U.S.A., by assessing nest initiation and establishment rates of colonies produced from wild-caught gynes, creating a timeline of colony development, and identifying lab-reared workers’ critical thermal maxima (CTMax) and lethal temperature (ecological death). From 2019 to 2021, 70.6% of the wild-caught B. griseocollis gynes produced brood in a laboratory setting. Of these successfully initiated nests, 74.8% successfully established a nest (produced a worker), providing guidance for future rearing efforts. Additionally, lab-reared workers produced from wild-caught B. griseocollis gynes had an average CTMax of 43.5°C and an average lethal temperature of 46.4°C, suggesting B. griseocollis can withstand temperatures well above those commonly found inmore »open field and greenhouse settings. Overall, B. griseocollis should continue to be evaluated for commercial purposes throughout the U.S.A.

    « less
  4. Abstract

    While adult stomatopod crustaceans are relatively well studied, understanding of larval stomatopod ecology is lacking, largely due to difficulties studying larvae in their natural habitat. This study investigated how light environment (i.e., spectral composition) and time of day affected prey consumption in two species of larval stomatopod, Gonodactylaceus falcatus (Forskål, 1775) and Gonodactylellus sp. Individual larvae were placed with 20 Artemia nauplii prey in feeding chambers treated to produce different light environments with respect to ultraviolet (UV) light: full spectrum light UV+, full spectrum UV–, and a dark control. Chambers were lowered to a depth of 3 m for 2 hours at three times of day (noon, twilight, and night) to test 1) if larval feeding rates changed at different times of day and 2) if UV vision was involved in prey capture. We found that light was important for successful feeding, with both species eating significantly more in lighted treatments than the dark controls during daytime experiments. Gonodactylellus sp. also had a significantly higher feeding rate at twilight in the UV+ treatment than in the dark control. Both species showed decreased consumption at night compared to daytime rates, and decreased consumption in all dark controls. This study ismore »one of the first to examine how ecological conditions affect feeding behavior in larval stomatopods. Our results suggest that light is important for larval stomatopod feeding, with differences between species in daily feeding activity periods. There was also a difference in total consumption between the two species, with the slightly larger Gonodactylaceus falcatus consuming nearly double the prey items as Gonodactylellus sp. at peak feeding times. Follow up studies should incorporate a variety of prey types to test how feeding changes based on food source and density.

    « less
  5. Abstract A steady supply of hosts at the susceptible stage for parasitism is a major component of mass rearing parasitoids for biological control programs. Here we describe the effects of storing 5th instar Plodia interpunctella larvae in dormancy on subsequent host development in the context of host colony maintenance and effects of the duration of host dormancy on the development of Habrobracon hebetor parasitoids reared from dormant hosts. We induced dormancy with a combination of short daylength (12L:12D) and lower temperature (15°C), conditions known to induce diapause in this species, and held 5th instar larvae of P. interpunctella for a series of dormancy durations ranging from 15 to 105 days. Extended storage of dormant 5th instar larvae had no significant impacts on survival, development, or reproductive potential of P. interpunctella , reinforcing that dormant hosts have a substantial shelf life. This ability to store hosts in dormancy for more than 3 months at a time without strong negative consequences reinforces the promise of using dormancy to maintain host colonies. The proportion of hosts parasitized by H. hebetor did not vary significantly between non-dormant host larvae and dormant host larvae stored for periods as long as 105 days. Concordant with amore »prior study, H. hebetor adult progeny production from dormant host larvae was higher than the number of progeny produced on non-dormant host larvae. There were no differences in size, sex ratio, or reproductive output of parasitoids reared on dormant hosts compared to non-dormant hosts stored for up to 105 days. Larval development times of H. hebetor were however longer when reared on dormant hosts compared to non-dormant hosts. Our results agree with other studies showing using dormant hosts can improve parasitoid mass rearing, and we show benefits for parasitoid rearing even after 3 months of host dormancy.« less