skip to main content


Title: Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history
Abstract Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica , a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee ( Apis mellifera ) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.  more » « less
Award ID(s):
1655963
NSF-PAR ID:
10285361
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ross, Darrell (Ed.)
    Abstract The yellow paper wasp, Polistes versicolor (Olivier) was first recorded in the Galapagos archipelago in 1988. Its life cycle and ecological impacts were studied on two islands 11 yr after it was first discovered. This invasive wasp adapted quickly and was found in most environments. Colony counts and adult wasp monitoring showed a strong preference for drier habitats. Nest activities were seasonally synchronized, nest building followed the rains in the hot season (typically January–May), when insect prey increases, and peaked as temperature and rains started to decline. Next, the number of adult wasps peaked during the cool season when there is barely any rain in the drier zones. In Galapagos, almost half of the prey loads of P. versicolor were lepidopteran larvae, but wasps also carried spiders, beetles, and flies back to the colonies. An estimated average of 329 mg of fresh insect prey was consumed per day for an average colony of 120–150 wasp larvae. The wasps preyed upon native and introduced insects, but likely also affect insectivorous vertebrates as competitors for food. Wasps may also compete with native pollinators as they regularly visited flowers to collect nectar, and have been recorded visiting at least 93 plant species in Galapagos, including 66 endemic and native plants. Colonies were attacked by a predatory moth, Taygete sphecophila (Meyrick) (Lepidoptera: Autostichidae), but colony development was not arrested. High wasp numbers also affect the activities of residents and tourists. A management program for this invasive species in the archipelago is essential. 
    more » « less
  2. Abstract

    Invasive social insects rank among the most damaging of terrestrial species. They are responsible for extensive damage and severely threaten the biodiversity of environments where they are introduced. Variation in colony social form commonly occurs in introduced populations of yellowjacket wasps (genusVespula). In particular, invasive colonies may contain multiple queens (i.e., polygyne) and persist several years, while in the native range, the colonies are usually annual and harbor a single queen (i.e., monogyne). In this study, we used genome‐wide loci obtained by double digest restriction site‐associated DNA sequencing (RADseq) to investigate the genetic structure and queen turnover in colonies of the western yellowjacket,Vespula pensylvanica, in their introduced range in Hawaii. Of the 27 colonies monitored over four months (October–January), 19 were polygyne and already contained multiple queens on the first day of sampling. Contrary to previous speculation, this finding suggests that polygyny often arises early in the annual colony cycle, before the production of new queens in the fall. Furthermore, polygyne colonies exhibited a prolonged average lifespan relative to those headed by a single queen. As a result, there is no clear window during which colony eradication efforts would be more effective than upon first discovery. The relatedness among nestmate queens was slightly above zero, indicating that these colonies are generally composed of nonrelatives. The queen turnover within each colony was low, and we detected some full‐sibling workers sampled up to four months apart. Finally, we did not detect any population structure among colonies, suggesting that queens disperse up to several kilometers. Taken together, our results provide the first insights into the requeening dynamics in this invasive and incipiently polygyne population and illuminate the early establishment of multiple long‐lasting queens in these damaging colonies.

     
    more » « less
  3. Abstract

    Many social species show variation in their social structure in response to different environmental conditions. For example, colonies of the yellowjacket waspVespula squamosaare typically headed by a single reproductive queen and survive for only a single season. However, in warmer climates,V. squamosacolonies sometimes persist for multiple years and can grow to extremely large size. We used genetic markers to understand patterns of reproduction and recruitment within these perennial colonies. We genotypedV. squamosaworkers, pre‐reproductive queens, and males from perennial colonies in the southeastern United States at 10 polymorphic microsatellite loci and one mitochondrial DNA locus. We found thatV. squamosafrom perennial nests were produced by multiple reproductives, in contrast to typical annual colonies. Relatedness of nestmates from perennial colonies was significantly lower than relatedness of nestmates from annual colonies. Our analyses of mitochondrial DNA indicated that mostV. squamosaperennial colonies represented semiclosed systems whereby all individuals belonged to a single matriline despite the presence of multiple reproductive females. However, new queens recruited into perennial colonies apparently mated with non‐nestmate males. Notably, perennial and annual colonies did not show significant genetic differences, supporting the hypothesis that perennial colony formation represents an instance of social plasticity. Overall, our results indicate that perennialV. squamosacolonies show substantial changes to their social biology compared to typical annual colonies and demonstrate variation in social behaviors in highly social species.

     
    more » « less
  4. ABSTRACT For insects known as parasitoid wasps, successful development as a parasite results in the death of the host insect. As a result of this lethal interaction, wasps and their hosts have coevolved strategies to gain an advantage in this evolutionary arms race. Although normally considered to be strict pathogens, some viruses have established persistent infections within parasitoid wasp lineages and are beneficial to wasps during parasitism. Heritable associations between viruses and parasitoid wasps have evolved independently multiple times, but most of these systems remain largely understudied with respect to viral origin, transmission and replication strategies of the virus, and interactions between the virus and host insects. Here, we report a detailed characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found within the venom gland of Diachasmimorpha longicaudata wasps. Our results show that DlEPV exhibits similar but distinct transmission and replication dynamics compared to those of other parasitoid viral elements, including vertical transmission of the virus within wasps, as well as virus replication in both female wasps and fruit fly hosts. Functional assays demonstrate that DlEPV is highly virulent within fly hosts, and wasps without DlEPV have severely reduced parasitism success compared to those with a typical viral load. Taken together, the data presented in this study illustrate a novel case of beneficial virus evolution, in which a virus of unique origin has undergone convergent evolution with other viral elements associated with parasitoid wasps to provide an analogous function throughout parasitism. IMPORTANCE Viruses are generally considered to be disease-causing agents, but several instances of beneficial viral elements have been identified in insects called parasitoid wasps. These virus-derived entities are passed on through wasp generations and enhance the success of the wasps’ parasitic life cycle. Many parasitoid-virus partnerships studied to date exhibit common features among independent cases of this phenomenon, including a mother-to-offspring route of virus transmission, a restricted time and location for virus replication, and a positive effect of virus activity on wasp survival. Our characterization of Diachasmimorpha longicaudata entomopoxvirus (DlEPV), a poxvirus found in Diachasmimorpha longicaudata parasitoid wasps, represents a novel example of beneficial virus evolution. Here, we show that DlEPV exhibits functional similarities to known parasitoid viral elements that support its comparable role during parasitism. Our results also demonstrate unique differences that suggest DlEPV is more autonomous than other long-term viral associations described in parasitoid wasps. 
    more » « less
  5. null (Ed.)
    Abstract Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176–179 Mb of total sequence assembled into 25 scaffolds, with 10–200 unanchored scaffolds, and 16,566–18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control. 
    more » « less