skip to main content


Title: Online Revenue Maximization for Server Pricing

Efficient and truthful mechanisms to price time on remote servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers online revenue maximization for a unit capacity server, when jobs are non preemptive, in the Bayesian setting: at each time step, one job arrives, with parameters drawn from an underlying distribution.We design an efficiently computable truthful posted price mechanism, which maximizes revenue in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic.We also show the pricing mechanism is robust to learning the job distribution from samples, where polynomially many samples suffice to obtain near optimal prices.

 
more » « less
Award ID(s):
1750436
PAR ID:
10223187
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Page Range / eLocation ID:
4106 to 4112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efficient and truthful mechanisms to price resources on servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers revenue maximization in the online stochastic setting with non-preemptive jobs and a unit capacity server. One agent/job arrives at every time step, with parameters drawn from the underlying distribution. We design a posted-price mechanism which can be efficiently computed and is revenue-optimal in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent’s type, and the computed pricing scheme is deterministic, depending only on the length of the allotted time interval and on the earliest time the server is available. We also prove that the proposed pricing strategy is robust to imprecise knowledge of the job distribution and that a distribution learned from polynomially many samples is sufficient to obtain a near-optimal truthful pricing strategy. 
    more » « less
  2. We consider a dynamic pricing problem where customer response to the current price is impacted by the customer price expectation, aka reference price. We study a simple and novel reference price mechanism where reference price is the average of the past prices offered by the seller. As opposed to the more commonly studied exponential smoothing mechanism, in our reference price mechanism the prices offered by seller have a longer-term effect on the future customer expectations. We show that under this mechanism, a markdown policy is near-optimal irrespective of the parameters of the model. This matches the common intuition that a seller may be better off by starting with a higher price and then decreasing it, as the customers feel like they are getting bargains on items that are ordinarily more expensive. For linear demand models, we also provide a detailed characterization of the near-optimal markdown policy along with an efficient way of computing it. We then consider a more challenging dynamic pricing and learning problem, where the demand model parameters are apriori unknown, and the seller needs to learn them online from the customers’ responses to the offered prices while simultaneously optimizing revenue. The objective is to minimize regret, i.e., the 𝑇-round revenue loss compared to a clairvoyant optimal policy. This task essentially amounts to learning a non-stationary optimal policy in a time-variant Markov Decision Process (MDP). For linear demand models, we provide an efficient learning algorithm with an optimal 𝑂(√𝑇 ) regret upper bound. 
    more » « less
  3. Motivated by demand-responsive parking pricing systems, we consider posted-price algorithms for the online metric matching prob- lem. We give an O(log n)-competitive posted-price randomized algorithm in the case that the metric space is a line. In particular, in this setting we show how to implement the ubiquitous guess-and-double technique using prices. 
    more » « less
  4. Abstract

    We study optimal pricing for tandem queueing systems with finite buffers. The service provider dynamically quotes prices to incoming price sensitive customers to maximize the long‐run average revenue. We present a Markov decision process model for the optimization problem. For systems with two stations, general‐sized buffers, and two or more prices, we describe the structure of the optimal dynamic pricing policy and develop tailored policy iteration algorithms to find an optimal pricing policy. For systems with two stations but no intermediate buffer, we characterize conditions under which quoting either a high or a low price to all customers is optimal and provide an easy‐to‐implement algorithm to solve the problem. Numerical experiments are conducted to compare the developed algorithms with the regular policy iteration algorithm. The work also discusses possible extensions of the obtained results to both three‐station systems and two‐station systems with price and congestion sensitive customers using numerical analysis.

     
    more » « less
  5. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less