Conventional bulky and rigid electronics prevents compliant interfacing with soft human skin for health monitoring and human-machine interaction, due to the incompatible mechanical characteristics. To overcome the limitations, soft skin-mountable electronics with superior mechanical softness, flexibility, and stretchability provides an effective platform for intimate interaction with humans. In addition, soft electronics offers comfortability when worn on the soft, curvilinear, and dynamic human skin. In this review, recent advances in soft electronics as health monitors and human-machine interfaces (HMIs) are briefly discussed. Strategies to achieve softness in soft electronics including structural designs, material innovations, and approaches to optimize the interface between human skin and soft electronics are briefly reviewed. Characteristics and performances of soft electronic devices for health monitoring, including temperature sensors, pressure sensors for pulse monitoring, pulse oximeters, electrophysiological sensors, and sweat sensors, exemplify their wide range of utility. Furthermore, we review the soft devices for prosthetic limb, household object, mobile machine, and virtual object control to highlight the current and potential implementations of soft electronics for a broad range of HMI applications. This review concludes with a discussion on the current limitations and future opportunities of soft skin-mountable electronics.
more »
« less
Do we still need physical monitors? An evaluation of the usability of AR virtual monitors for productivity work
Physical monitors require space, lack flexibility, and can become expensive and less portable in large setups. Virtual monitors, on the other hand, can minimize those problems, but may be subject to technological limitations such as lower resolution and field of view. We investigate the impacts of using virtual monitors displayed on a current state-of-the-art augmented reality headset for conducting productivity work. We conducted a user study that compared physical monitors, virtual monitors, and a hybrid combination of both in terms of performance, accuracy, comfort, focus, preference, and confidence. Results show that virtual monitors are a feasible approach for performing serious productivity work, albeit currently constrained by technical limitations that lead to inferior usability and performance compared to physical monitors. We also discovered that, with current technology, the hybrid condition was a better tradeoff between the familiarity and trustworthiness of physical monitors and the extra space provided by virtual monitors. We conclude by expressing the opportunity for designing strategies for mixing virtual and physical monitors into novel hybrid interfaces.
more »
« less
- Award ID(s):
- 2003387
- PAR ID:
- 10223229
- Date Published:
- Journal Name:
- IEEE Virtual Reality 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Predicting the minimum operating voltage Vmin of chips is one of the important techniques for improving the manufacturing testing flow, as well as ensuring the long-term reliability and safety of in-field systems. Current Vmin prediction methods often provide only point estimates, necessitating additional techniques for constructing prediction confidence intervals to cover uncertainties caused by different sources of variations. While some existing techniques offer region predictions, but they rely on certain distributional assumptions and/or provide no coverage guarantees. In response to these limitations, we propose a novel distribution-free Vmin interval estimation methodology possessing a theoretical guarantee of coverage. Our approach leverages conformalized quantile regression and on-chip monitors to generate reliable prediction intervals. We demonstrate the effectiveness of the proposed method on an industrial 5nm automotive chip dataset. Moreover, we show that the use of on-chip monitors can reduce the interval length significantly for Vmin prediction.more » « less
-
In manufacturing industries, equipment arrangement, and layout design are critical factors that directly influence productivity, workplace safety, and workers’ performance. Link analysis, as a human factors approach, has been widely used in industries for many years to improve layout design and machinery arrangement. This approach considers humans' physical and cognitive capabilities and movement limitations to find an optimal design. Virtual reality significantly impacts our society from product design to worker training. Hence, effective virtual training platforms require the same attention to layout design as manufacturing work settings which offer efficient testing of multiple layouts. This research focuses on developing a virtual 3D printing laboratory for workforce training and has used a link analysis and user perception study to improve the layout of the virtual workplace. The research demonstrates the importance of layout design in virtual training platforms and the potential benefits of utilizing link analysis in optimizing layout design.more » « less
-
A large body of research in the field of virtual reality (VR) is focused on making user interfaces more natural and intuitive by leveraging natural body movements to explore a virtual environment. For example, head-tracked user interfaces allow users to naturally look around a virtual space by moving their head. However, such approaches may not be appropriate for users with temporary or permanent limitations of their head movement. In this paper, we present techniques that allow these users to get full-movement benefits from a reduced range of physical movements. Specifically, we describe two techniques that augment virtual rotations relative to physical movement thresholds. We describe how each of the two techniques can be implemented with either a head tracker or an eye tracker, e.g., in cases when no physical head rotations are possible. We discuss their differences and limitations and we provide guidelines for the practical use of such augmented user interfaces.more » « less
-
Medical Cyber-physical Systems (MCPS) are vul- nerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the gener- ation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1- score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.more » « less
An official website of the United States government

