Scaling up the radiance of coupled laser arrays has been a long-standing challenge in photonics. In this study, we demonstrate that notions from supersymmetry—a theoretical framework developed in high-energy physics—can be strategically used in optics to address this problem. In this regard, a supersymmetric laser array is realized that is capable of emitting exclusively in its fundamental transverse mode in a stable manner. Our results not only pave the way toward devising new schemes for scaling up radiance in integrated lasers, but also, on a more fundamental level, could shed light on the intriguing synergy between non-Hermiticity and supersymmetry.
more »
« less
Higher-dimensional supersymmetric microlaser arrays
The nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers—collectively oscillating in the fundamental transverse supermode—which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and quantum regimes.
more »
« less
- PAR ID:
- 10223307
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 372
- Issue:
- 6540
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 403-408
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
TPC of IEEE ESSCIRC Conference (Ed.)This paper presents an mmWave FMCW radar that can achieve sub-centimeter-scale range resolution at 14- GHz chirp-bandwidth while maintaining the radar range beyond 50 meters. To meet the requirements on power efficiency, chirp linearity, and signal-to-noise ratio (SNR), a phase-locked steppedchirp FMCW radar architecture is introduced. Specifically, a fully integrated radar transceiver comprising an interleaved frequency-segmented phase-locked transmitter and a segmented receiver architecture with high sensitivity is presented. The proposed design addresses the limitations of conventional typeII phase-locked loops (PLLs) in extending the radar bandwidth across multiple sub-bands with identical chirp profiles. Fabricated in a 22nm FD-SOI technology, the prototype chip comprises two sub-bands with 14 GHz of free-running bandwidth and 10 GHz of phase-locked bandwidth. The system achieves -101.7 dBc/Hz phase noise at 1 MHz offset, 8 dBm of effective isotropic radiated power (EIRP), 10 dB noise figure (NF), and 362.6 mW collective power consumption of transmitter and receiver arrays.more » « less
-
The development of manufacturable and scalable integrated nonlinear photonic materials is driving key technologies in diverse areas, such as high-speed communications, signal processing, sensing, and quantum information. Here, we demonstrate a nonlinear platform—InGaP-on-insulator—optimized for visible-to-telecommunication wavelength χ(2) nonlinear optical processes. In this work, we detail our 100 mm wafer-scale InGaP-on-insulator fabrication process realized via wafer bonding, optical lithography, and dry-etching techniques. The resulting wafers yield 1000 s of components in each fabrication cycle, with initial designs that include chip-to-fiber couplers, 12.5-cm-long nested spiral waveguides, and arrays of microring resonators with free-spectral ranges spanning 400–900 GHz. We demonstrate intrinsic resonator quality factors as high as 324 000 (440 000) for single-resonance (split-resonance) modes near 1550 nm corresponding to 1.56 dB/cm (1.22 dB/cm) propagation loss. We analyze the loss vs waveguide width and resonator radius to establish the operating regime for optimal 775–1550 nm phase matching. By combining the high χ(2) and χ(3) optical nonlinearity of InGaP with wafer-scale fabrication and low propagation loss, these results open promising possibilities for entangled-photon, multi-photon, and squeezed light generation.more » « less
-
An oscillator made of a periodic waveguide comprising of uniform lossless segments with discrete nonlinear gain and radiating resistive elements prefers to operate at exceptional point of degeneracy (EPD). The steady-state regime is an EPD with π phase shift between unit cells, for various choices of small signal gain of the nonlinear elements and number of unit cells. We demonstrated this fact by monitoring both current and voltage across each nonlinear gain element and finding its effective admittance at the oscillating frequency and checking the degeneracy of the eigenmodes at such point. The EPD studied here is very promising for many applications that incorporate discrete distributed coherent sources and radiation-loss elements. Operating in the vicinity of such special degeneracy conditions may lead to potential performance enhancement in the various microwave, THz and optical systems with distributed gain and radiation, paving the way for a new class of active integrated antenna arrays and radiating laser arrays.more » « less
-
Abstract The large scale control over thousands of quantum emitters desired by quantum network technology is limited by the power consumption and cross-talk inherent in current microwave techniques. Here we propose a quantum repeater architecture based on densely-packed diamond color centers (CCs) in a programmable electrode array, with quantum gates driven by electric or strain fields. This ‘field programmable spin array’ (FPSA) enables high-speed spin control of individual CCs with low cross-talk and power dissipation. Integrated in a slow-light waveguide for efficient optical coupling, the FPSA serves as a quantum interface for optically-mediated entanglement. We evaluate the performance of the FPSA architecture in comparison to a routing-tree design and show an increased entanglement generation rate scaling into the thousand-qubit regime. Our results enable high fidelity control of dense quantum emitter arrays for scalable networking.more » « less
An official website of the United States government
