skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supersymmetric laser arrays
Scaling up the radiance of coupled laser arrays has been a long-standing challenge in photonics. In this study, we demonstrate that notions from supersymmetry—a theoretical framework developed in high-energy physics—can be strategically used in optics to address this problem. In this regard, a supersymmetric laser array is realized that is capable of emitting exclusively in its fundamental transverse mode in a stable manner. Our results not only pave the way toward devising new schemes for scaling up radiance in integrated lasers, but also, on a more fundamental level, could shed light on the intriguing synergy between non-Hermiticity and supersymmetry.  more » « less
Award ID(s):
1454531
PAR ID:
10334899
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science
Volume:
363
Issue:
6427
ISSN:
0036-8075
Page Range / eLocation ID:
623 to 626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers—collectively oscillating in the fundamental transverse supermode—which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and quantum regimes. 
    more » « less
  2. Given the fundamental importance of combinatorial optimization across many diverse domains, there has been widespread interest in the development of unconventional physical computing architectures that can deliver better solutions with lower resource costs. However, a theoretical understanding of their performance remains elusive. We develop such understanding for the case of the coherent Ising machine (CIM), a network of optical parametric oscillators that can be applied to any quadratic unconstrained binary optimization problem. We focus on how the CIM finds low-energy solutions of the Sherrington-Kirkpatrick spin glass. As the laser gain of this system is annealed, the CIM interpolates between gradient descent on coupled soft spins to descent on coupled binary spins. By combining the Kac-Rice formula, the replica method, and supersymmetry breaking, we develop a detailed understanding of the evolving geometry of the high-dimensional energy landscape of the CIM as the laser gain increases, finding several phase transitions in the landscape, from flat to rough to rigid. Additionally, we develop a novel cavity method that provides a geometric interpretation of supersymmetry breaking in terms of the reactivity of a rough landscape to specific external perturbations. Our energy landscape theory successfully matches numerical experiments, provides geometric insights into the principles of CIM operation, and yields optimal annealing schedules. Published by the American Physical Society2024 
    more » « less
  3. Silica (SiO2) aerogel is widely used in high-energy-density shock experiments due to its low and adjustable density. Reported here are measurements of the shock velocity, optical radiance, and reflectivity of shocked SiO2 aerogel with initial densities of 0.1, 0.2, and 0.3 g/cm3. These results are compared with similar data from three solid polymorphs of SiO2, silica, quartz, and stishovite with initial densities 2.2, 2.65, and 4.3 g/cm3, respectively. Interestingly, below a brightness temperature of Tbright≈35,000 K, the slope of the radiance vs shock velocity is the same for each of the SiO2 aerogels and solid polymorphs. At Tbright≈35000 K, there is an abrupt change in the radiance vs shock velocity slope for aerogels, but not seen in the solid polymorphs over the pressures and temperatures explored here. An empirical model of shock front radiance as a function of SiO2 density and laser drive parameters is reported to aid in the design of experiments requiring maximum shock front radiance. 
    more » « less
  4. Multimode emission adversely affects phased-locked laser arrays resulting in chaotic behaviors. Utilizing optical supersymmetry, we experimentally demonstrate a single mode laser array where a superpartner array eliminates undesired higher order transverse modes. 
    more » « less
  5. A multimode, chaotic, and broadband emission is an undesired characteristic of laser arrays which is an adverse effect of supermodes in coupled waveguides. Employing optical supersymmetry, we experimentally demonstrate single mode lasing in arrays of supersymmetric lasers where a superpatner array eliminates undesired lasing modes. 
    more » « less