skip to main content


Title: Preliminary outcomes from a learning community to increase biology course knowledge
The purpose of this study was to evaluate the preliminary outcomes of a learning community intervention (LC), which was based on the performance pyramid theoretical model of student supports. The LC integrated college algebra into biology course work. We used a quasi-experimental design to compare LC students to separate General Biology I and College Algebra course control groups on respective measures of biology and algebra course knowledge, and an assessment of perceived performance pyramid supports. Participants included 198 students (LC, n = 22; biology control, n = 52; mathematics control, n = 124) at a Historically Black University in the Southern United States. An analysis of covariance (ANCOVA) indicated that the LC students had significantly greater performance from pre- to post-test on a measure of biology course knowledge (Cohen’s d = 0.76) compared to the biology control group. An ANCOVA indicated that the LC and mathematics control students performed similarly on a measure of algebra course knowledge. Group differences from a multivariate analysis of covariance on perceived performance pyramid supports were mostly statistically non-significant. Overall, the LC increased biology course performance. Implications for improving biology course performance and better assessment of students’ perceptions of support for academic success are discussed.  more » « less
Award ID(s):
1719262
NSF-PAR ID:
10223426
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Biological Education
Volume:
55
Issue:
1
ISSN:
0021-9266
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The purpose of this paper was to give a demonstration of the primary materials and methods we used in learning communities (LCs) for biology students. The LCs were based on the performance pyramid theoretical structure. The objectives were to show the pedagogical links biological and mathematical concepts through co-curricular projects; assess students’ perceptions of the performance pyramid model, and demonstrate a method for assessing LC efficacy directly related to General Biology I and College Algebra course content. Forty-eight students were recruited into the LCs with 39 students completing the LCs. The participants completed co-curricular projects that linked biology and mathematics course content with guidance from a peer leader. The LC participants completed the Augmented Student Support Needs Scale (SSNS-A) to assess perceptions of performance pyramid elements, as well as separate biology and mathematics quizzes related to their General Biology I and College Algebra courses, respectively. It was found that all co-curricular projects had biology and mathematics learning objective and outcomes. The SSNS-A had adequate internal consistency for appraising multiple aspects of the performance pyramid in general. However, some aspects and student responses might need more clarification. The quizzes had adequate internal consistency and LC students had large gains in biology (d = 1.88) and mathematics (d = 2.62) knowledge and skills from the beginning to end of their General Biology I and College Algebra courses. Promising aspects and limitations the LC activities and assessments are discussed. 
    more » « less
  2. null (Ed.)
    While many studies have demonstrated the efficacy of programs designed to increase underrepresented minority participation, this article establishes a guiding theoretical model which examines why such programs might work. Theoretical models are often used to support curricular innovation by specifying guidelines for how to design new programs intended to broaden participation in STEM. The theoretical model of the Performance Pyramid was used as the foundation to develop intrusive Peer Partnership Learning (PPL) communities and develop a measure of student needs. The PPL communities were designed for students to simultaneously take College Algebra and General Biology I and involved weekly sessions led by trained PPL leaders to reinforce course content and work on biology projects with imbedded math content. The augmented SSNS (SSNS-A) was developed to measures these students needs that are directly related to the Performance Pyramid constructs. In addition, other outcomes measures were selected to identify, analyze and address the barriers to student performance in both courses related to the seven support systems of the Performance Pyramid. This theory-based program was developed to (a) advance and test pedagogical linkages between biological and mathematical concepts; (b) improve, test, and refine the assessment instruments, and (c) test the acceptability and efficacy of a fully integrated biology-math curriculum on student performance and attitudes. 
    more » « less
  3. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
    more » « less
  4. null (Ed.)
    The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. 
    more » « less
  5. Science, technology, engineering, and mathematics (STEM) education can be stressful, but uncertainty exists about (a) whether stressful academic settings elevate cortisol, particularly among students from underrepresented racial/ethnic groups, and (b) whether cortisol responses are associated with academic performance. In four classes around the first exam in a gateway college STEM course, we investigated participants’ ( N = 271) cortisol levels as a function of race/ethnicity and tested whether cortisol responses predicted students’ performance. Regardless of race/ethnicity, students’ cortisol, on average, declined from the beginning to the end of each class and across the four classes. Among underrepresented minority (URM) students, higher cortisol responses predicted better performance and a lower likelihood of dropping the course. Among non-URM students, there were no such associations. For URM students, lower cortisol responses may have indicated disengagement, whereas higher cortisol responses may have indicated striving. The implication of cortisol responses can depend on how members of a group experience an environment.

     
    more » « less