skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applying the Performance Pyramid Model in STEM Education
The purpose of this paper was to give a demonstration of the primary materials and methods we used in learning communities (LCs) for biology students. The LCs were based on the performance pyramid theoretical structure. The objectives were to show the pedagogical links biological and mathematical concepts through co-curricular projects; assess students’ perceptions of the performance pyramid model, and demonstrate a method for assessing LC efficacy directly related to General Biology I and College Algebra course content. Forty-eight students were recruited into the LCs with 39 students completing the LCs. The participants completed co-curricular projects that linked biology and mathematics course content with guidance from a peer leader. The LC participants completed the Augmented Student Support Needs Scale (SSNS-A) to assess perceptions of performance pyramid elements, as well as separate biology and mathematics quizzes related to their General Biology I and College Algebra courses, respectively. It was found that all co-curricular projects had biology and mathematics learning objective and outcomes. The SSNS-A had adequate internal consistency for appraising multiple aspects of the performance pyramid in general. However, some aspects and student responses might need more clarification. The quizzes had adequate internal consistency and LC students had large gains in biology (d = 1.88) and mathematics (d = 2.62) knowledge and skills from the beginning to end of their General Biology I and College Algebra courses. Promising aspects and limitations the LC activities and assessments are discussed.  more » « less
Award ID(s):
1719262
PAR ID:
10223424
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of STEM education: Innovations and Research
Volume:
22
Issue:
1
Page Range / eLocation ID:
25-33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The purpose of this study was to evaluate the preliminary outcomes of a learning community intervention (LC), which was based on the performance pyramid theoretical model of student supports. The LC integrated college algebra into biology course work. We used a quasi-experimental design to compare LC students to separate General Biology I and College Algebra course control groups on respective measures of biology and algebra course knowledge, and an assessment of perceived performance pyramid supports. Participants included 198 students (LC, n = 22; biology control, n = 52; mathematics control, n = 124) at a Historically Black University in the Southern United States. An analysis of covariance (ANCOVA) indicated that the LC students had significantly greater performance from pre- to post-test on a measure of biology course knowledge (Cohen’s d = 0.76) compared to the biology control group. An ANCOVA indicated that the LC and mathematics control students performed similarly on a measure of algebra course knowledge. Group differences from a multivariate analysis of covariance on perceived performance pyramid supports were mostly statistically non-significant. Overall, the LC increased biology course performance. Implications for improving biology course performance and better assessment of students’ perceptions of support for academic success are discussed. 
    more » « less
  2. null (Ed.)
    While many studies have demonstrated the efficacy of programs designed to increase underrepresented minority participation, this article establishes a guiding theoretical model which examines why such programs might work. Theoretical models are often used to support curricular innovation by specifying guidelines for how to design new programs intended to broaden participation in STEM. The theoretical model of the Performance Pyramid was used as the foundation to develop intrusive Peer Partnership Learning (PPL) communities and develop a measure of student needs. The PPL communities were designed for students to simultaneously take College Algebra and General Biology I and involved weekly sessions led by trained PPL leaders to reinforce course content and work on biology projects with imbedded math content. The augmented SSNS (SSNS-A) was developed to measures these students needs that are directly related to the Performance Pyramid constructs. In addition, other outcomes measures were selected to identify, analyze and address the barriers to student performance in both courses related to the seven support systems of the Performance Pyramid. This theory-based program was developed to (a) advance and test pedagogical linkages between biological and mathematical concepts; (b) improve, test, and refine the assessment instruments, and (c) test the acceptability and efficacy of a fully integrated biology-math curriculum on student performance and attitudes. 
    more » « less
  3. null (Ed.)
    The authors completed a pilot study to examine the original Student Support Needs Scale (SSNS') and alternative forms. They assessed how the items were related to each other, how SSNS versions correlated with each other, and the SSNS versions associations with measures of student attitudes and performance. Eighty students from a historically Black college and university participated. SSNS 10-item- and 5-item-per-scale form s were created. They were compared with the original, to each other, and to other measures. The coefficients related to how items related to each other indicated that the alternative form s had similar to better correspondence between related items than the original scales. The 5-item-per-scale version was used as the augmented SSNS (SSNS-A). SSNS-A correlations with measures o f student attitudes and performance were generally in the expected direction. Implications are discussed in regard to reliability and validity of the SSNS-A. 
    more » « less
  4. Co-curricular team projects in engineering – like design projects, experimental assignments, or national project-based competitions or challenges – can be key experiences for students in forming personal and professional skills and traits. Little concrete data is available about why students choose to participate or not participate in such activities though, and how their participation and perceptions of the activities may be influenced by factors such as their gender identity, race/ethnicity, and other facets of themselves and their experiences. Without this data, it is difficult to conceive of strategies to improve participation in certain activities among groups of people who are otherwise under-represented compared even to their representation at the College level. The research was devised to gather insight into why students chose to participate or not participate, and what they felt the benefits and detrimental effects of participation were. The pilot study was conducted at the Cal Poly San Luis Obispo campus, which is part of the California State University system - it has a student cohort that is not particularly diverse compared to the rest of the system or highly representative of state demographics, and it has an institutional focus on applied, hands- on learning that means that a high number of students participate in co-curricular engineering projects. A 70 question survey tool, adapted from an existing tool, garnered responses from nearly 500 students, with demographic and identity questions preceding sections about factors that led to participation or non- participation, and then perceptions of positive and negative outcomes that can come from involvement in co-curricular engineering projects. 
    more » « less
  5. It is no secret that the retention of students majoring in Science, Technology, Engineering, and Mathematics (STEM) has presented itself to be a challenge across the country. The National Science Foundation (NSF) allots substantial funding annually towards this effort. Jackson State University’s (JSU) Students Understanding Chemistry Concepts to Enhance STEM Skills (SUCCESS) Program is one such effort funded by the NSF. While the JSU Department of Biology had over 900 majors in 2016, data suggested that less than 23% would graduate with a bachelor’s degree within six years of entry. According to data obtained, the first four chemistry courses, General Chemistry (I & II) and Organic Chemistry (I & II), were significant barriers to the educational success of many Biology majors. A review of the literature provides many examples of initiatives to improve student retention. A reoccurring theme found that the comprehensive understanding of the students’ experiences within a particular major is essential to determining how best to impact student retention in that department. Student focus groups were implemented to evaluate the perceptions of Biology majors enrolled in Chemistry classes who utilized the SUCCESS Program. The overall impression of students in the SUCCESS Program was that it was helpful and beneficial to their classroom success, increased their confidence to learn Chemistry, and improved their understanding of Chemistry concepts. The students often identified scheduling conflicts as a hindrance to their participation. They also felt that the program was needed to help most students pass their tests. 
    more » « less