skip to main content


Title: Characterization and Miniaturization of Silver-Nanoparticle Microcoil via Aerosol Jet Printing Techniques for Micromagnetic Cochlear Stimulation
According to the National Institute of Deafness and other Communication Disorders 2012 report, the number of cochlear implant (CI) users is steadily increasing from 324,000 CI users worldwide. The cochlea, located in the inner ear, is a snail-like structure that exhibits a tonotopic geometry where acoustic waves are filtered spatially according to frequency. Throughout the cochlea, there exist hair cells that transduce sensed acoustic waves into an electrical signal that is carried by the auditory nerve to ultimately reach the auditory cortex of the brain. A cochlear implant bridges the gap if non-functional hair cells are present. Conventional CIs directly inject an electrical current into surrounding tissue via an implanted electrode array and exploit the frequency-to-place mapping of the cochlea. However, the current is dispersed in perilymph, a conductive bodily fluid within the cochlea, causing a spread of excitation. Magnetic fields are more impervious to the effects of the cochlear environment due to the material properties of perilymph and surrounding tissue, demonstrating potential to improve precision. As an alternative to conventional CI electrodes, the development and miniaturization of microcoils intended for micromagnetic stimulation of intracochlear neural elements is described. As a step toward realizing a microcoil array sized for cochlear implantation, human-sized coils were prototyped via aerosol jet printing. The batch reproducible aerosol jet printed microcoils have a diameter of 1800 μm, trace width and trace spacing of 112.5 μm, 12 μm thickness, and inductance values of approximately 15.5 nH. Modelling results indicate that the coils have a combined depolarization–hyperpolarization region that spans 1.5 mm and produce a more restrictive spread of activation when compared with conventional CI.  more » « less
Award ID(s):
1809334 1827321
NSF-PAR ID:
10223431
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
21
ISSN:
1424-8220
Page Range / eLocation ID:
6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Central auditory processing disorder (CAPD) is associated with difficulties hearing and processing acoustic information, as well as subsequent impacts on the development of higher-order cognitive processes (i.e., attention and language). Yet CAPD also lacks clear and consistent diagnostic criteria, with widespread clinical disagreement on this matter. As such, identification of biological markers for CAPD would be useful. A recent genome association study identified a potential CAPD risk gene, USH2A. In a homozygous state, this gene is associated with Usher syndrome type 2 (USH2), a recessive disorder resulting in bilateral, high-frequency hearing loss due to atypical cochlear hair cell development. However, children with heterozygous USH2A mutations have also been found to show unexpected low-frequency hearing loss and reduced early vocabulary, contradicting assumptions that the heterozygous (carrier) state is “phenotype free”. Parallel evidence has confirmed that heterozygous Ush2a mutations in a transgenic mouse model also cause low-frequency hearing loss (Perrino et al., 2020). Importantly, these auditory processing anomalies were still evident after covariance for hearing loss, suggesting a CAPD profile. Since usherin anomalies occur in the peripheral cochlea and not central auditory structures, these findings point to upstream developmental feedback effects of peripheral sensory loss on high-level processing characteristic of CAPD. In this study, we aimed to expand upon the mouse behavioral battery used in Perrino et al. (2020) by evaluating central auditory brain structures, including the superior olivary complex (SOC) and medial geniculate nucleus (MGN), in heterozygous and homozygous Ush2a mice. We found that heterozygous Ush2a mice had significantly larger SOC volumes while homozygous Ush2a had significantly smaller SOC volumes. Heterozygous mutations did not affect the MGN; however, homozygous Ush2a mutations resulted in a significant shift towards more smaller neurons. These findings suggest that alterations in cochlear development due to USH2A variation can secondarily impact the development of brain regions important for auditory processing ability. 
    more » « less
  2. Abstract

    Compared to many other rodent species, naked mole rats (Heterocephalus glaber) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus), gerbils (Meriones unguiculatus), and Damaraland mole rats (Fukomys damarensis), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments.

     
    more » « less
  3. Mimicking the nonlinear compressive behavior of the mammalian cochlear amplifier that results in the compression of high-intensity sounds and amplification of faint stimuli can lead to transformative improvements in the dynamic range, sharpness of the response, and threshold of sound detection in cochlear implants to aid individuals with hearing loss. Furthermore, it can enhance the dynamic properties of sensors. This research on developing self-sensing artificial hair cells (AHCs) validates the phenomenological control algorithm established in Part I of the paper to achieve a cochlea-like response from the quadmorph AHCs. As the beam is excited, the voltage of the piezoelectric layers is measured and used to generate a control voltage. Consequently, the controller applies cubic damping to the AHC, while reducing linear damping near its first natural frequency to replicate the biological cochlea’s function. Experimental results validate the model built in Part I of the paper and the work is extended to implement a multi-channel AHC. The system works independent of external sensors and offers significant advantages over previous generations of AHCs such as the ability to embed AHCs in a limited space and to combine several AHCs in an array without the need for external feedback measurement devices.

     
    more » « less
  4. Abstract

    This review examines the role of auditory training on speech adaptation for cochlear implant users. A current limitation of the existing evidence base is the failure to adequately account for wide variability in speech perception outcomes following implantation. While many preimplantation factors contribute to the variance observed in outcomes, formal auditory training has been proposed as a way to maximize speech comprehension benefits for cochlear implant users. We adopt an interdisciplinary perspective and focus on integrating the clinical rehabilitation literature with basic research examining perceptual learning of speech. We review findings on the role of auditory training for improving perception of degraded speech signals in normal hearing listeners, with emphasis on how lexically oriented training paradigms may facilitate speech comprehension when the acoustic input is diminished. We conclude with recommendations for future research that could foster translation of principles of speech learning in normal hearing listeners to aural rehabilitation protocols for cochlear implant patients.

     
    more » « less
  5. This study investigates the integration of word-initial fundamental frequency (F0) and voice-onset-time (VOT) in stop voicing categorization for adult listeners with normal hearing (NH) and unilateral cochlear implant (CI) recipients utilizing a bimodal hearing configuration [CI + contralateral hearing aid (HA)]. Categorization was assessed for ten adults with NH and ten adult bimodal listeners, using synthesized consonant stimuli interpolating between /ba/ and /pa/ exemplars with five-step VOT and F0 conditions. All participants demonstrated the expected categorization pattern by reporting /ba/ for shorter VOTs and /pa/ for longer VOTs, with NH listeners showing more use of VOT as a voicing cue than CI listeners in general. When VOT becomes ambiguous between voiced and voiceless stops, NH users make more use of F0 as a cue to voicing than CI listeners, and CI listeners showed greater utilization of initial F0 during voicing identification in their bimodal (CI + HA) condition than in the CI-alone condition. The results demonstrate the adjunctive benefit of acoustic hearing from the non-implanted ear for listening conditions involving spectrotemporally complex stimuli. This finding may lead to the development of a clinically feasible perceptual weighting task that could inform clinicians about bimodal efficacy and the risk-benefit profile associated with bilateral CI recommendation.

     
    more » « less