Compared to many other rodent species, naked mole rats (
- Award ID(s):
- 1655494
- NSF-PAR ID:
- 10459909
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Comparative Neurology
- Volume:
- 527
- Issue:
- 14
- ISSN:
- 0021-9967
- Page Range / eLocation ID:
- p. 2302-2316
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel K v 3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and K v 3.3 protein levels in the brainstem.more » « less
-
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.more » « less
-
ABSTRACT Around the world and across taxa, subterranean mammals show remarkable convergent evolution in morphology (e.g., reduced external ears, small eyes, shortened limbs and tails). This is true of sensory systems as well (e.g., loss of object vision and high frequency hearing). The naked mole‐rat (
) displays these typical subterranean features, but also has unusual characteristics even among subterranean mammals. Naked mole‐rats are cold‐blooded, completely furless, very long‐lived (> 30 years), and eusocial (like termites). They also live in large colonies, which is very unusual for subterraneans. Their cortical organization has reduced area for visual processing, utilizing 30% more cortex for tactile processing. They are extremely tolerant to oxygen deprivation, and can recover from 18 min of anoxia. Their pain pathway is reduced and they feel no pain from acidosis. They are the only rodent tested to date whose pheromone‐detecting vomeronasal organ shows no postnatal growth. These features may be a result of this species' “extreme subterranean lifestyle” that combines living underground and living in large colonies. Many respiring animals cramped together in unventilated burrows elevates CO2levels, high enough to cause acidosis pain, and depletes O2concentrations low enough to kill other mammals. The naked mole‐rat may be an extreme model of adaptation to subterranean life and provides insights into the complex interplay of evolutionary adaptations to the constraints of subterranean living. Anat Rec, 2018. © 2018 American Association for Anatomy.Heterocephalus glaber -
ABSTRACT The colonial naked mole rat
Heterocephalus glaber is a subterranean, eusocial rodent. TheH. glaber vomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine ifH. glaber shares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth‐associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadultH. glaber individuals. VNE volume measurements on a small sample ofCryptomys hottentotus andFukomys damarensis indicate that the VNE of those African mole rat species are also likely to be growth‐deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells. In this respect, the VNO ofH. glaber does not appear vestigial. The African mole rat VNE may be unusually variable, perhaps reflecting reduced selection pressure on the vomeronasal system. If so, African mole rats may provide a useful genetic model for understanding the morphological variability observed in the mammalian VNO. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:318–329, 2020. © 2019 American Association for Anatomy -
Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.