skip to main content

Title: CSL+: Scalable Collective Subjective Logic under Multidimensional Uncertainty
Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which significantly hurts the decision making process. Recently, many approaches have been taken to integrate conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory, has been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing operators, which have been used to solve many opinion inference problems in trust networks. However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL + , which is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with large-scale network data, allowing high scalability based on relationships between opinions. However, PSL does not consider more » an uncertainty dimension in a subjective opinion. To take benefits from both SL and PSL, we proposed a hybrid approach called CSL + for achieving high scalability and high prediction accuracy for unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence. Through the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the CSL + outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL), and deep learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity, and real running time. « less
Authors:
; ;
Award ID(s):
1954376
Publication Date:
NSF-PAR ID:
10223463
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
12
Issue:
1
Page Range or eLocation-ID:
1 to 26
ISSN:
2157-6904
Sponsoring Org:
National Science Foundation
More Like this
  1. Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.
  2. Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN)more »with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterparts« less
  3. Larochelle, Hugo ; Ranzato, Marc'Aurelio ; Hadsell, Raia ; Balcan, Maria ; Lin, Hsuan (Ed.)
    We present a novel multi-source uncertainty prediction approach that enables deep learning (DL) models to be actively trained with much less labeled data. By leveraging the second-order uncertainty representation provided by subjective logic (SL), we conduct evidence-based theoretical analysis and formally decompose the predicted entropy over multiple classes into two distinct sources of uncertainty: vacuity and dissonance, caused by lack of evidence and conflict of strong evidence, respectively. The evidence based entropy decomposition provides deeper insights on the nature of uncertainty, which can help effectively explore a large and high-dimensional unlabeled data space. We develop a novel loss function that augments DL based evidence prediction with uncertainty anchor sample identification. The accurately estimated multiple sources of uncertainty are systematically integrated and dynamically balanced using a data sampling function for label-efficient active deep learning (ADL). Experiments conducted over both synthetic and real data and comparison with competitive AL methods demonstrate the effectiveness of the proposed ADL model.
  4. We present a novel multi-source uncertainty prediction approach that enables deep learning (DL) models to be actively trained with much less labeled data. By leveraging the second-order uncertainty representation provided by subjective logic (SL), we conduct evidence-based theoretical analysis and formally decompose the predicted entropy over multiple classes into two distinct sources of uncertainty: vacuity and dissonance, caused by lack of evidence and conflict of strong evidence, respectively. The evidence based entropy decomposition provides deeper insights on the nature of uncertainty, which can help effectively explore a large and high-dimensional unlabeled data space. We develop a novel loss function that augments DL based evidence prediction with uncertainty anchor sample identification. The accurately estimated multiple sources of uncertainty are systematically integrated and dynamically balanced using a data sampling function for label-efficient active deep learning (ADL). Experiments conducted over both synthetic and real data and comparison with competitive AL methods demonstrate the effectiveness of the proposed ADL model.
  5. This project, titled Collective Argumentation Learning and Coding (CALC), aims to use the principles of collective argumentation to teach coding through appropriate reasoning. Creating and critiquing arguments as part of a coding activity promotes a more structured approach rather than the trial-and-error coding activity commonly used by novice programmers. Teaching coding via collective argumentation allows teachers to use methods that are already in use in mathematics and science instruction to teach coding, thus increasing the probability that it will be taught in conjunction with mathematics and science as regular parts of classroom instruction rather than relegated to an after-school or enrichment activity for only some students. Specific objectives of the CALC project are to - increase the attention that coding is given in the elementary classrooms taught by our participating teachers, and -direct students away from informal approaches (e.g.trial-and-error) to develop code to the more formal, structured approach recommended for novice programmers. Our research activities investigate teachers’ understanding of argumentation using the CALC concept and how the implementation of the CALC concept helps students (grades 3-5) learn how to code. The CALC approach supports the learning of coding by providing teachers with a formal, structured means to a) trace themore »growth of students’ understanding, and misunderstanding, of ideas (i.e., coding) as they form, b) facilitate students’ use of evidence, not opinion, to select a solution among multiple solutions (i.e., different sequencing of the code), and c) help each student realize she/he, as well as others, is a legitimate participant (i.e., a programmer) in the activity of developing, assessing and implementing an idea (e.g., coding of a robot). This paper/presentation discussed the first phase of an on-going investigation and focuses on a prototype graduate-level course designed for and taught to practicing elementary school teachers. The discussion outlines how the course impacted the participating teachers content knowledge of coding and their belief that coding can be made an integral part of everyday lessons, not as an add-on activity.« less