The role of the geometric phase effect in chemical reaction dynamics has long been a topic of active experimental and theoretical investigations. The topic has received renewed interest in recent years in cold and ultracold chemistry where it was shown to play a decisive role in state-to-state chemical dynamics. We provide a brief review of these developments focusing on recent studies of O + OH and hydrogen exchange in the H + H 2 and D + HD reactions at cold and ultracold temperatures. Non-adiabatic effects in ultracold chemical dynamics arising from the conical intersection between two electronic potential energy surfaces are also briefly discussed. By taking the hydrogen exchange reaction as an illustrative example it is shown that the inclusion of the geometric phase effect captures the essential features of non-adiabatic dynamics at collision energies below the conical intersection.
more »
« less
Non-adiabatic quantum interference in the ultracold Li + LiNa → Li 2 + Na reaction
Electronically non-adiabatic effects play an important role in many chemical reactions. However, how these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate coefficients. The interference effect arises from the conical intersection between the ground and an excited electronic state that is energetically accessible even for ultracold collisions. These unique interference effects might be exploited for quantum control applications such as a quantum molecular switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the long-range interactions. A statistical analysis of rotational populations of the Li 2 product reveals a Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is robust and amenable to experimental verification and appears to be a universal property of ultracold reactions involving alkali metal dimers.
more »
« less
- PAR ID:
- 10223529
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 5096 to 5112
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
By means of density functional theory computations, we explored the electrochemical performance of an FeSe monolayer as an anode material for lithium and non-lithium ion batteries (LIBs and NLIBs). The electronic structure, adsorption, diffusion, and storage behavior of different metal atoms (M) in FeSe were systematically investigated. Our computations revealed that M adsorbed FeSe (M = Li, Na and K) systems show metallic characteristics that give rise to good electrical conductivity and mobility with low activation energies for diffusion (0.16, 0.13 and 0.11 eV for Li, Na, and K, respectively) of electrons and metal atoms in the materials, indicative of a fast charge/discharge rate. In addition, the theoretical capacities of the FeSe monolayer for Li, Na and K can reach up to 658, 473, and 315 mA h g −1 , respectively, higher than that of commercial graphite (372 mA h g −1 for Li, 284 mA h g −1 for Na, and 273 mA h g −1 for K), and the average open-circuit voltage is moderate (0.38–0.88 V for Li, Na and K). All these characteristics suggest that the FeSe monolayer is a potential anode material for alkali-metal rechargeable batteries.more » « less
-
The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.more » « less
-
The poor interfacial stability of Li metal leads to formation of unstable solid-electrolyte interphases (SEIs) and severely limits its practical applications. Protecting Li metal with an artificial SEI that has balanced stability, conductivity and mechanical strength is critical. Here we demonstrate a design strategy for stabilizing Li using Mo 6 S 8 /carbon artificial SEI films. These films are directly coated on Li foil and the Mo 6 S 8 particles provide ordered conduction channels for fast but regulated Li-ion flux, and provide hybrid anodes that have nearly four times higher exchange current densities. They also have seamless contact with Li metal and protect it from parasitic reactions, and hence significantly improve its stability. Consequently, Li metal batteries in which the hybrid anodes were paired with LiNi 0.8 Mn 0.1 Co 0.1 O 2 cathodes (3.0 mA h per cell) exhibited significantly improved cycling stability (63% vs. 25% retention) and a stabilized Li interphase compared with pristine Li anodes.more » « less
-
Lama, B ; Smirnova, A ; Paudel, T (Ed.)Ionic diffusivity plays a central role in battery performance. A cathode material for lithium-ion (Li-ion) batteries, LiFePO4 (LFP), performs poorly at high current rates due to low Li-ion diffusivity. An increase in ionic diffusivity is essential to enhance battery performance for high-power-density applications such as hybrid and electric vehicles. Here, we use molecular dynamics simulations with machine learning force field and climbing-image nudged elastic band calculations to show that Li-ion diffusivity in LFP increases when doped with the transition-metal dopant ruthenium. This increase is associated with a reduction in Li diffusion energy barrier, diffusion length, and Li-vacancy formation energy, and it is accompanied by changes in the electronic band structure, specifically the appearance of electronic states in the middle of the band gap and the vicinity of the conduction band.more » « less