skip to main content


Title: The Li + CaF → Ca + LiF chemical reaction under cold conditions
The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms.  more » « less
Award ID(s):
2110227
PAR ID:
10426518
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
20
ISSN:
1463-9076
Page Range / eLocation ID:
14193 to 14205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Electronically non-adiabatic effects play an important role in many chemical reactions. However, how these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate coefficients. The interference effect arises from the conical intersection between the ground and an excited electronic state that is energetically accessible even for ultracold collisions. These unique interference effects might be exploited for quantum control applications such as a quantum molecular switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the long-range interactions. A statistical analysis of rotational populations of the Li 2 product reveals a Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is robust and amenable to experimental verification and appears to be a universal property of ultracold reactions involving alkali metal dimers. 
    more » « less
  2. ABSTRACT

    Observations of transitions between the hyperfine levels of the hydroxyl radical (OH) can provide crucial information on the physical conditions in interstellar clouds. Accurate modelling of the spectra requires calculated rate coefficients for the excitation of OH by H atoms, which is often present in molecular clouds in addition to the dominant H2 molecule. In this work, rate coefficients for the (de-)excitation of hyperfine levels of OH through collisions with hydrogen atoms are presented. In previous work, nuclear-spin-free scattering calculations were carried out; these took account of the fact that four electronic states (1A′, 1A″, 3A′, and 3A″) arise from the interaction of OH(X2Π) with H(2S). Because of the deep H2O($\tilde{X}^1A^{\prime }$) well, inelastic transitions can occur through direct collisions or by formation and decay of a collision complex. The rates of collision-induced hyperfine transitions were computed by the recoupling method and the MJ randomization approximations, respectively. These data will be useful in astrophysical models of OH excitation.

     
    more » « less
  3. Abstract

    There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60scattering with Ar.

     
    more » « less
  4. The fine and hyperfine interactions in PbF have been studied using the laser-induced fluorescence (LIF) spectroscopy method. Cold PbF molecular beam was produced by laser-ablating a Pb rod under jet-cooled conditions, followed by the reaction with SF6. The LIF excitation spectrum of the (0, 0) band in the B2Σ+–X2Π1/2 system of the 208PbF, 207PbF, and 206PbF isotopologues has been recorded with rotational, fine structure, and hyperfine-structure resolution. Transitions in the LIF spectrum were assigned and combined with the previous X2Π3/2–X2Π1/2 emission spectrum in the near-infrared region [Ziebarth et al., J. Mol. Spectrosc. 191, 108–116 (1998)] and the X2Π1/2 state pure rotational spectrum of PbF [Mawhorter et al., Phys. Rev. A 84, 022508 (2011)] in a global fit to derive the rotational, spin–orbit, spin–rotation, and hyperfine interaction parameters of the ground (X2Π1/2) and the excited (B2Σ+) electronic states. Molecular constants determined in the present work are compared with previously reported values. Particularly, the significance of the hyperfine parameters, A⊥ and A‖, of 207Pb is discussed. 
    more » « less
  5. The effects of hyperfine structure on ultracold molecular collisions in external fields are largely unexplored due to major computational challenges associated with rapidly proliferating hyperfine and rotational channels coupled by highly anisotropic intermolecular interactions. We explore a new basis set for incorporating the effects of hyperfine structure and external magnetic fields in quantum scattering calculations on ultracold molecular collisions. The basis is composed of direct products of the eigenfunctions of the total {\it rotational} angular momentum (TRAM) of the collision complex Jr and the electron/nuclear spin basis functions of the collision partners. The separation of the rotational and spin degrees of freedom ensures rigorous conservation of Jr even in the presence of external magnetic fields and isotropic hyperfine interactions. The resulting block-diagonal structure of the scattering Hamiltonian enables coupled-channel calculations on highly anisotropic atom-molecule and molecule-molecule collisions to be performed independently for each value of Jr, with an added advantage of eliminating the unphysical states present in the total angular momentum representation. We illustrate the efficiency of the TRAM basis by calculating state-to-state cross sections for ultracold He + YbF collisions in a magnetic field. The size of the TRAM basis required to reach numerical convergence is 8 times smaller than that of the uncoupled basis used previously, providing a computational gain of three orders of magnitude. The TRAM basis is therefore well suited for rigorous quantum scattering calculations on ultracold molecular collisions in the presence of hyperfine interactions and external magnetic fields. 
    more » « less