skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatially and temporally distributed data foraging decisions in disciplinary field science
Abstract How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions.  more » « less
Award ID(s):
1734355 1734365
PAR ID:
10223578
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Cognitive Research: Principles and Implications
Volume:
6
Issue:
1
ISSN:
2365-7464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Truly collaborative scientific field data collection between human scientists and autonomous robot systems requires a shared understanding of the search objectives and tradeoffs faced when making decisions. Therefore, critical to developing intelligent robots to aid human experts is an understanding of how scientists make such decisions and how they adapt their data collection strategies when presented with new informationin situ. In this study, we examined the dynamic data collection decisions of 108 expert geoscience researchers using a simulated field scenario. Human data collection behaviors suggested two distinct objectives: an information-based objective to maximize information coverage and a discrepancy-based objective to maximize hypothesis verification. We developed a highly simplified quantitative decision model that allows the robot to predict potential human data collection locations based on the two observed human data collection objectives. Predictions from the simple model revealed a transition from information-based to discrepancy-based objective as the level of information increased. The findings will allow robotic teammates to connect experts’ dynamic science objectives with the adaptation of their sampling behaviors and, in the long term, enable the development of more cognitively compatible robotic field assistants. 
    more » « less
  2. Abstract Understanding and communicating uncertainty is a key skill needed in the practice of science. However, there has been little research on the instruction of uncertainty in undergraduate science education. Our team designed a module within an online geoscience field course which focused on explicit instruction around uncertainty and provided students with an uncertainty rating scale to record and communicate their uncertainty with a common language. Students then explored a complex, real-world geological problem about which expert scientists had previously made competing claims through geologic maps. Provided with data, expert uncertainty ratings, and the previous claims, students made new geologic maps of their own and presented arguments about their claims in written form. We analyzed these reports along with assessments of uncertainty. Most students explicitly requested geologists’ uncertainty judgments in a post-course assessment when asked why scientists might differ in their conclusions and/or utilized the rating scale unprompted in their written arguments. Through the examination of both pre- and post-course assessments of uncertainty and students’ course-based assessments, we argue that explicit instruction around uncertainty can be introduced during undergraduate coursework and could facilitate geoscience novices developing into practicing geoscientists. 
    more » « less
  3. Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams. 
    more » « less
  4. Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, a geologist who confidently interprets ambiguous data as representative of a familiar category form their research (e.g., strike slip faults for expert in extensional domains) is exhibiting the availability bias, which occurs when people make judgments based on what is most dominant or accessible in memory. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we summarize the key insights from decision making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists decision making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to those strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision making, where debiased decision making is an emergent property of the coordinated and integrated processing of human-AI collaborative teams. 
    more » « less
  5. null (Ed.)
    We analyze the submissions of 286 students as they solved Structured Query Language (SQL) homework assignments for an upper-level databases course. Databases and the ability to query them are becoming increasingly essential for not only computer scientists but also business professionals, scientists, and anyone who needs to make data-driven decisions. Despite the increasing importance of SQL and databases, little research has documented student difficulties in learning SQL. We replicate and extend prior studies of students' difficulties with learning SQL. Students worked on and submitted their homework through an online learning management system with support for autograding of code. Students received immediate feedback on the correctness of their solutions and had approximately a week to finish writing eight to ten queries. We categorized student submissions by the type of error, or lack thereof, that students made, and whether the student was eventually able to construct a correct query. Like prior work, we find that the majority of student mistakes are syntax errors. In contrast with the conclusions of prior work, we find that some students are never able to resolve these syntax errors to create valid queries. Additionally, we find that students struggle the most when they need to write SQL queries related to GROUP BY and correlated subqueries. We suggest implications for instruction and future research. 
    more » « less