skip to main content

Title: Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order
Antiferromagnets are interesting materials for spintronics because of their faster dynamics and robustness against perturbations from magnetic fields. Control of the antiferromagnetic order constitutes an important step towards applications, but has been limited to bulk materials so far. Here, using spatially resolved second-harmonic generation, we show direct evidence of long-range antiferromagnetic order and Ising-type Néel vector switching in monolayer MnPSe3 with large XY anisotropy. In additional to thermally induced switching, uniaxial strain can rotate the Néel vector, aligning it to a general in-plane direction irrespective of the crystal axes. A change of the universality class of the phase transition in the XY model under uniaxial strain causes this emergence of strain-controlled Ising order in the XY magnet MnPSe3. Our discovery is a further ingredient for compact antiferromagnetic spintronic devices in the two-dimensional limit.
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Nature Nanotechnology
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multi-functional thin films of boron (B) doped Cr 2 O 3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H . Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr 2 O 3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent T N and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H  = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr 2 O 3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.
  2. Antiferromagnetic oxides have recently gained much attention because of the possibility to manipulate electrically and optically the Néel vectors in these materials. Their ultrafast spin dynamics, long spin diffusion length and immunity to large magnetic fields make them attractive candidates for spintronic applications. Additionally, there have been many studies on spin wave and magnon transport in single crystals of these oxides. However, the successful applications of the antiferromagnetic oxides will require similar spin transport properties in thin films. In this work, we systematically show the sputtering deposition method for two uniaxial antiferromagnetic oxides, namely Cr2O3 and α-Fe2O3, on A-plane sapphire substrates, and identify the optimized deposition conditions for epitaxial films with low surface roughness. We also confirm the antiferromagnetic properties of the thin films. The deposition method developed in this article will be important for studying the magnon transport in these epitaxial antiferromagnetic thin films.
  3. Abstract Finding the solution to a large category of optimization problems, known as the NP-hard class, requires an exponentially increasing solution time using conventional computers. Lately, there has been intense efforts to develop alternative computational methods capable of addressing such tasks. In this regard, spin Hamiltonians, which originally arose in describing exchange interactions in magnetic materials, have recently been pursued as a powerful computational tool. Along these lines, it has been shown that solving NP-hard problems can be effectively mapped into finding the ground state of certain types of classical spin models. Here, we show that arrays of metallic nanolasers provide an ultra-compact, on-chip platform capable of implementing spin models, including the classical Ising and XY Hamiltonians. Various regimes of behavior including ferromagnetic, antiferromagnetic, as well as geometric frustration are observed in these structures. Our work paves the way towards nanoscale spin-emulators that enable efficient modeling of large-scale complex networks.
  4. Abstract A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe 2 As 2 , which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nematic) transition temperature T s . Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature T N ( <  T s ) and create in-plane resistivity anisotropy above T s . Here we use neutron polarization analysis to show that such a strain on BaFe 2 As 2 also induces a static or quasi-static out-of-plane ( c -axis) AF order and its associated critical spin fluctuations near T N / T s . Therefore, uniaxial pressure necessary to detwin single crystals of BaFe 2 As 2 actually rotates the easy axis of the collinear AF order near T N / T s , and such effects due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.
  5. In this work we study a low-cost two-dimensional ferromagnetic semiconductor with possible applications in biomedicine, solar cells, spintronics, and energy and hydrogen storage. From first principle calculations we describe the unique electronic, transport, optical, and magnetic properties of a π-conjugated micropore polymer (CMP) with three iron atoms placed in the middle of an isolated pore locally resembling heme complexes. This material exhibits strong Fe-localized d z2 bands. The bandgap is direct and equal to 0.28 eV. The valence band is doubly degenerate at the Γ -point and for larger k -wavevectors the HOMO band becomes flat with low contribution to charge mobility. The absorption coefficient is roughly isotropic. The conductivity is also isotropic with the nonzero contribution in the energy range 0.3–8 eV. The xy -component of the imaginary part of the dielectric tensor determines the magneto-optical Faraday and Kerr rotation. Nonvanishing rotation is observed in the interval of 0.5–5.0 eV. This material is found to be a ferromagnet of an Ising type with long-range exchange interactions with a very high magnetic moment per unit cell, m = 6 μ B . The exchange integral is calculated by two independent methods: (a) from the energy difference between ferromagnetic and antiferromagneticmore »states and (b) from a magnon dispersion curve. In the former case J nn = 27 μeV. In the latter case the magnon dispersion is fitted by the Ising model with the nearest and next-nearest neighbor spin interactions. From these estimations we find that J nn = 19.5 μeV and J nnn = −3 μeV. Despite the different nature of the calculations, the exchange integrals are only within 28% difference.« less