skip to main content


Title: Tris-(2-pyridylmethyl)amine-ligated Cu( ii ) 1,3-diketonate complexes: anaerobic retro-Claisen and dehalogenation reactivity of 2-chloro-1,3-diketonate derivatives
We report synthetic, structural and reactivity investigations of tris-(2-pyridylmethyl)amine (TPA)-ligated Cu( ii ) 1,3-diketonate complexes. These complexes exhibit anaerobic retro-Claisen type C–C bond cleavage reactivity which exceeds that found in analogs supported by chelate ligands with fewer and/or weaker pyridyl interactions.  more » « less
Award ID(s):
1664977 1828764
NSF-PAR ID:
10223700
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
5
ISSN:
1477-9226
Page Range / eLocation ID:
1712 to 1720
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O. 
    more » « less
  2. Warren Piers (Ed.)
    Although cobalt( i ) bis-phosphine complexes have been implicated in many selective C–C bond-forming reactions, until recently relatively few of these compounds have been fully characterized or have been shown to be intermediates in catalytic reactions. In this paper we present a new practical method for the synthesis and isolation of several cobalt( i )-bis-phosphine complexes and their use in Co( i )-catalyzed reactions. We find that easily prepared ( in situ generated or isolated) bis-phosphine and (2,6- N -aryliminoethyl)pyridine (PDI) cobalt( ii ) halide complexes are readily reduced by 1,4-bis-trimethylsilyl-1,4-dihydropyrazine or commercially available lithium nitride (Li 3 N), leaving behind only innocuous volatile byproducts. Depending on the structures of the bis-phosphines, the cobalt( i ) complex crystallizes as a phosphine-bridged species [(P∼P)(X)Co I [μ-(P∼P)]Co I (X)(P∼P)] or a halide-bridged species [(P∼P)Co I [μ-(X)] 2 Co I (P∼P)]. Because the side-products are innocuous, these methods can be used for the in situ generation of catalytically competent Co( i ) complexes for a variety of low-valent cobalt-catalyzed reactions of even sensitive substrates. These complexes are also useful for the synthesis of rare cationic [(P∼P)Co I -η 4 -diene] + X − or [(P∼P)Co I -η 6 -arene] + X − complexes, which are shown to be excellent single-component catalysts for the following regioselective reactions of dienes: heterodimerizations with ethylene or methyl acrylate, hydroacylation and hydroboration. The reactivity of the single-component catalysts with the in situ generated species are also documented. 
    more » « less
  3. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments. 
    more » « less
  4. Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis. 
    more » « less
  5. Asymmetric synthesis of substituted 1,4 cyclohexadienes and cyclobutenes has received great attention in recent years. Strategies such as base metal catalyzed cycloaddition bypass the need of harsh reaction conditions which are often required for synthesis of such motifs. These strategies using base-metals as catalysts are also valuable in constructing substituted cyclic motifs from readily available and inexpensive materials such as dienes and alkynes. Such reactions can be cost effective and environmentally friendly. In past decade, low valent cobalt has shown promising reactivity in forming new C-C and C-X (e. g., X= Si, B, N) bonds in high stereoselectivity. Through our studies, we found that cationic cobalt(I) complexes can catalyze intermolecular cycloaddition reactions of alkyne and 1,3-dienes in regio-and enantioselective manner. We also discovered that the involvement of 4 pi electrons or 2 pi electrons of 1,3-dienes can be controlled by the judicious choice of ligands employed on cobalt leading to [4+2] and [2+2] cycloaddition products respectively in high regio- and stereoselectivity. This excellent selectivity complimented with moderate to good yields provided us with broadly applicable protocol for synthesis of diversely substituted enantiopure cyclic motifs with enantiomeric excesses upto 99%. The scope of this method has been expanded over simple aliphatic and aromatic 1,3-dienes and alkynes bearing various functional groups. The methodical development of this transformation along with the ligand effects and possible mechanisms will be discussed in detail. 
    more » « less