skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sumatra Subduction Zone
Drilling the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction zone system and the origin of the Mw ~9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004, was designed to groundtruth the material properties causing unexpectedly shallow seismogenic slip and a distinctive forearc prism structure. The intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the north Sumatran subduction zone are a distinctively thick (as thick as 4–5 km) succession of primarily Bengal-Nicobar Fan–related sediments. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggest the input materials are key to driving the distinctive slip behavior and long-term forearc structure. During Expedition 362, two sites on the Indian oceanic plate ~250 km southwest of the subduction zone, Sites U1480 and U1481, were drilled, cored, and logged to a maximum depth of 1500 meters below seafloor. The succession of sediment/rocks that will develop into the plate boundary detachment and will drive growth of the forearc were sampled, and their progressive mechanical, frictional, and hydrogeological property evolution will be analyzed through postcruise experimental and modeling studies. The large penetration depths with good core recovery and successful wireline logging in the challenging submarine fan materials will enable evaluation of the role of thick sedimentary subduction zone input sections in driving shallow slip and amplifying earthquake and tsunami magnitudes at the Sunda subduction zone and globally at other subduction zones where submarine fan–influenced sections are being subducted.  more » « less
Award ID(s):
1326927
PAR ID:
10223878
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
362
ISSN:
2377-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Drilling the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction zone system and the origin of the Mw ~9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004, was designed to groundtruth the material properties causing unexpectedly shallow seismogenic slip and a distinctive forearc prism structure. The intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the north Sumatran subduction zone are a distinctively thick (as thick as 4–5 km) succession of primarily Bengal-Nicobar Fan–related sediments. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggest the input materials are key to driving the distinctive slip behavior and long-term forearc structure. During Expedition 362, two sites on the Indian oceanic plate ~250 km southwest of the subduction zone, Sites U1480 and U1481, were drilled, cored, and logged to a maximum depth of 1500 meters below seafloor. The succession of sediment/rocks that will develop into the plate boundary detachment and will drive growth of the forearc were sampled, and their progressive mechanical, frictional, and hydrogeological property evolution will be analyzed through postcruise experimental and modeling studies. Large penetration depths with good core recovery and successful wireline logging in the challenging submarine fan materials will enable evaluation of the role of thick sedimentary subduction zone input sections in driving shallow slip and amplifying earthquake and tsunami magnitudes, at the Sunda subduction zone and globally at other subduction zones where submarine fan–influenced sections are being subducted. 
    more » « less
  2. null (Ed.)
    The 2004 Mw 9.2 earthquake and tsunami that struck North Sumatra and the Andaman-Nicobar Islands devastated coastal communities around the Indian Ocean and was the first earthquake to be analyzed by modern techniques. This earthquake and the Tohoku-Oki Mw 9.0 earthquake and tsunami in 2011 showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4–5 km) sequence of primarily Bengal-Nicobar Fan–related sediments. This sequence shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions prior to accretion. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggests the input materials are key to driving the distinctive slip behavior and long-term forearc structure. The aim of Expedition 362 is to begin to understand the nature of seismogenesis in North Sumatra through sampling these input materials and assessing their evolution, en route to understanding such processes on related convergent margins. Properties of the incoming section affect the strength of the wedge interior and base, likely promoting the observed plateau development. In turn, properties of deeper input sediment control décollement position and properties, and hence hold the key to shallow coseismic slip. During Expedition 362, two primary, riserless sites (proposed Sites SUMA-11C and SUMA-12A) will be drilled on the oceanic plate to analyze the properties of the input materials. Coring, downhole pressure and temperature measurements, and wireline logging at these sites will constrain sediment deposition rates, diagenesis, thermal and physical properties, and fluid composition. Postexpedition experimental analyses and numerical models will be employed to investigate the mechanical and frictional behavior of the input section sediments/sedimentary rocks as they thicken, accrete, and become involved in plate boundary slip system and prism development. These samples and downhole measurements will augment the internationally collected site survey bathymetric, seismic, and shallow core data that provide the regional geological framework of the margin. 
    more » « less
  3. The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Discovery Program (IODP) Expedition 405 (Tracking Tsunamigenic Slip Across the Japan Trench) aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that allow slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026, ~8 km seaward of the Japan Trench, to characterize the input sediments to the subduction zone and Site C0019, ~6 km landward of the trench, where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), and revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~980 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to take measurements over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, will provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with a variety of domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials. 
    more » « less
  4. The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Drilling Program (IODP) Expedition 405 aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026 ~8 km seaward of the Japan Trench to characterize the input sediments to the subduction zone and Site C0019 ~6 km landward of the trench where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), so revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~960 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to measure temperature over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with diverse domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials. 
    more » « less
  5. The 11 March 2011 M 9.0 Tohoku-oki earthquake was one of the largest earthquakes ever recorded and was accompanied by a devastating tsunami. Slip during the earthquake was exceptionally large at shallow depth on the plate boundary fault, which was one of the primary factors that contributed to the extreme tsunami amplitudes that inundated the coast of Japan. International Ocean Discovery Program Expedition 405 aims to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface in the 2011 Tohoku-oki earthquake. Proposed work includes coring and logging operations at two sites in a transect across the trench. The first site, located within the overriding plate, will access the fault zone in the region of large shallow slip, targeting the plate boundary décollement, overlying frontal prism, and subducted units cut by the décollement. The second site, located on the Pacific plate, will access the undisturbed sedimentary and volcanic inputs to the subduction zone. A borehole observatory will be installed into the décollement and surrounding rocks to provide measurements of the temperature in and around the fault over the following several years. Sampling, geophysical logs, and the observatory temperature time series will document the compositional, structural, mechanical, and frictional properties of the rocks in the décollement and adjacent country rock, as well as the hydrogeologic structure and pore fluid pressure of the fault zone and frontal prism—key properties that influence the effective stress to facilitate earthquake slip and potential for large slip. Results from Expedition 405 will address fundamental questions about earthquake slip on subduction zones that may directly inform earthquake and tsunami hazard assessments around the world. 
    more » « less