skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-Polymerization Modification of Ring Opening Metathesis Polymerization (ROMP)-Derived Materials Using Wittig Reactions
This communication describes our recent efforts to utilize Wittig olefination reactions for the post-polymerization modification of polynorbornene derivatives prepared through ring opening metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.  more » « less
Award ID(s):
1847914
PAR ID:
10224206
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Polymers
Volume:
12
Issue:
6
ISSN:
2073-4360
Page Range / eLocation ID:
1247
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A nitroso Diels–Alder (NDA) reaction between cyclopentadiene and an in situ generated nitroso compound leads to a new heterocyclic monomer for ring opening metathesis polymerization (ROMP) reactions. This monomer could be polymerized in the presence of Grubbs‐third generation initiator with good control overMnand decentÐvalues. The resulting isoxazolidine‐containing material could undergo further hydrogenation, deprotection, and modification with Dansyl chloride as well as ring opening to provide an amino‐and hydroxyl‐decorated “polyolefin.” 
    more » « less
  2. Abstract The synthesis of high‐molecular‐weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain‐transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)–organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol−1can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end. 
    more » « less
  3. We report a post-polymerization modification strategy to functionalize methacrylic copolymers through enol-ester transesterification. A new monomer, vinyl methacryloxy acetate (VMAc), containing both enol-ester and methacryloyl functionality, was successfully copolymerized with methyl methacrylate (MMA) by selective reversible addition–fragmentation chain transfer (RAFT) polymerization. Post-polymerization modification of pendent enol esters proceeded through an “irreversible” transesterification process, driven by the low nucleophilicity of the tautomerization product, to result in high conversion under mild conditions. 
    more » « less
  4. null (Ed.)
    Redox-switchable polymerizations of lactide and epoxides were extended to the solid state by anchoring an iron-based polymerization catalyst to TiO 2 nanoparticles. The reactivity of the molecular complexes and their redox-switching characteristics were maintained in the solid-state. These properties resulted in surface-initiated polymerization reactions that produced polymer brushes whose chemical composition is dictated by the oxidation state of the iron-based complex. Depositing the catalyst-functionalized TiO 2 nanoparticles on fluorine-doped tin oxide resulted in an electrically addressable surface that could be used to demonstrate spatial control in redox-switchable polymerization reactions. By using a substrate that contained two electrically isolated domains wherein one domain was exposed to an oxidizing potential, patterns of surface-bound polyesters and polyethers were accessible through sequential application of lactide and cyclohexene oxide. The differentially functionalized surfaces demonstrated distinct physical properties that illustrated the promise for using the method to pattern surfaces with multiple, chemically distinct polymer brushes. 
    more » « less
  5. Abstract The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy. 
    more » « less