Abstract Lava worlds are a potential emerging population of Super-Earths that are on close-in orbits around their host stars, with likely partially molten mantles. To date, few studies have addressed the impact of magma on the observed properties of a planet. At ambient conditions, magma is less dense than solid rock; however, it is also more compressible with increasing pressure. Therefore, it is unclear how large-scale magma oceans affect planet observables, such as bulk density. We updateExoPlex, a thermodynamically self-consistent planet interior software, to include anhydrous, hydrous (2.2 wt% H2O), and carbonated magmas (5.2 wt% CO2). We find that Earth-like planets with magma oceans larger than ∼1.5R⊕and ∼3.2M⊕are modestly denser than an equivalent-mass solid planet. From our model, three classes of mantle structures emerge for magma ocean planets: (1) a mantle magma ocean, (2) a surface magma ocean, and (3) one consisting of a surface magma ocean, a solid rock layer, and a basal magma ocean. The class of planets in which a basal magma ocean is present may sequester dissolved volatiles on billion-year timescales, in which a 4M⊕mass planet can trap more than 130 times the mass of water than in Earth’s present-day oceans and 1000 times the carbon in the Earth’s surface and crust.
more »
« less
A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres
Abstract Magma oceans were once ubiquitous in the early solar system, setting up the initial conditions for different evolutionary paths of planetary bodies. In particular, the redox conditions of magma oceans may have profound influence on the redox state of subsequently formed mantles and the overlying atmospheres. The relevant redox buffering reactions, however, remain poorly constrained. Using first-principles simulations combined with thermodynamic modeling, we show that magma oceans of Earth, Mars, and the Moon are likely characterized with a vertical gradient in oxygen fugacity with deeper magma oceans invoking more oxidizing surface conditions. This redox zonation may be the major cause for the Earth’s upper mantle being more oxidized than Mars’ and the Moon’s. These contrasting redox profiles also suggest that Earth’s early atmosphere was dominated by CO2and H2O, in contrast to those enriched in H2O and H2for Mars, and H2and CO for the Moon.
more »
« less
- Award ID(s):
- 1764140
- PAR ID:
- 10224247
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fe2O3produced in a deep magma ocean in equilibrium with core-destined alloy sets the early redox budget and atmospheric composition of terrestrial planets. Previous experiments (≤28 gigapascals) and first-principles calculations indicate that a deep terrestrial magma ocean produces appreciable Fe3+but predict Fe3+/ΣFe ratios that conflict by an order of magnitude. We present Fe3+/ΣFe of glasses quenched from melts equilibrated with Fe alloy at 38 to 71 gigapascals, 3600 to 4400 kelvin, analyzed by synchrotron Mössbauer spectroscopy. These indicate Fe3+/ΣFe of 0.056 to 0.112 in a terrestrial magma ocean with mean alloy-silicate equilibration pressures of 28 to 53 gigapascals, producing sufficient Fe2O3to account for the modern bulk silicate Earth redox budget and surficial conditions near or more oxidizing than the iron-wüstite buffer, which would stabilize a primitive CO- and H2O-rich atmosphere.more » « less
-
Abstract The degassing of CO2and S from arc volcanoes is fundamentally important to global climate, eruption forecasting, ore deposits, and the cycling of volatiles through subduction zones. However, all existing thermodynamic/empirical models have difficulties reproducing CO2‐H2O‐S trends observed in melt inclusions and provide widely conflicting results regarding the relationships between pressure and CO2/SO2in the vapor. In this study, we develop an open‐source degassing model, Sulfur_X, to track the evolution of S, CO2, H2O, and redox states in melt and vapor in ascending mafic‐intermediate magma. Sulfur_X describes sulfur degassing by parameterizing experimentally derived sulfur partition coefficients for two equilibria: RxnI. FeS (m) + H2O (v) H2S (v) + FeO (m), and RxnII. CaSO4(m) SO2(v) + O2(v) + CaO (m), based on the sulfur speciation in the melt (m) and co‐existing vapor (v). Sulfur_X is also the first to track the evolution offO2and sulfur and iron redox states accurately in the system using electron balance and equilibrium calculations. Our results show that a typical H2O‐rich (4.5 wt.%) arc magma with high initial S6+/ΣS ratio (>0.5) will degas much more (∼2/3) of its initial sulfur at high pressures (>200 MPa) than H2O‐poor ocean island basalts with low initial S6+/ΣS ratio (<0.1), which will degas very little sulfur until shallow pressures (<50 MPa). The pressure‐S relationship in the melt predicted by Sulfur_X provides new insights into interpreting the CO2/STratio measured in high‐T volcanic gases in the run‐up to the eruption.more » « less
-
Abstract Magmatic volatiles drive pressure, temperature, and compositional changes in upper crustal magma chambers and alter the physical properties of stored magmas. Previous studies suggest that magmatic H2O content influences the growth and longevity of silicic chambers through regulating the size and frequency of eruptions and impacting the crystallinity‐temperature curve. However, there has been comparatively little exploration of how CO2impacts the evolution of magma chambers despite the strong influence of CO2on H2O solubility and the high concentrations of CO2often present in mafic systems. In this study, we integrate the thermodynamic effects of dissolved and exsolved H2O and CO2with the mechanics of open‐system magma chambers that interact thermally and mechanically with the crust. We applied this model to investigate how intrinsic variations in magmatic H2O‐CO2content influence the growth and longevity of silicic and mafic magma chambers. Our findings indicate that even with a tenfold increase in CO2content (up to 10,000 ppm), CO2plays a minimal role in long‐term chamber growth and longevity. While CO2content affects the magma compressibility, the resulting changes in eruption mass are balanced out by a commensurate change in eruption frequency so that the time‐averaged eruptive flux and long‐term chamber behavior remain similar. In contrast, H2O content strongly influences chamber growth and longevity. In silicic systems, high H2O contents hinder magma chamber growth by increasing the total eruptive flux and steepening the slope of the crystallinity‐temperature curve. In mafic systems, high H2O contents promote magma chamber growth by flattening the slope of the crystallinity‐temperature curve.more » « less
-
Abstract The redox state of arc mantle has been considered to be more oxidized and diverse than that of the mid-ocean ridge, but the cause of the variation is debated. We examine the redox state of the Cenozoic global arc mantle by compiling measured/calculatedfO2of olivine-hosted melt inclusions from arc magma and modeledfO2based on V/Sc and Cu/Zr ratios of arc basaltic rocks. The results indicate that the redox state of Cenozoic arc mantle is latitude dependent, with less oxidized arc mantle in the low latitudes, contrasting with a near constant across-latitude trend in the mid-ocean ridges. We propose that such a latitude-dependent pattern in the arc mantle may be controlled by the variation in the redox state of subducted sediment, possibly related to a latitudinal variation in the primary production of phytoplankton, which results in more organic carbon and sulfide deposited on the low-latitude ocean floor. Our findings provide evidence for the impact of the surface environment on Earth’s upper mantle.more » « less
An official website of the United States government
