skip to main content


Title: Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum

A spatiotemporal optical vortex (STOV) is an intrinsic optical orbital angular momentum (OAM) structure in which the OAM vector is orthogonal to the propagation direction [Optica6,1547(2019)OPTIC82334-253610.1364/OPTICA.6.001547] and the optical phase circulates in space-time. Here, we experimentally and theoretically demonstrate the generation of the second harmonic of a STOV-carrying pulse along with the conservation of STOV-based OAM. Our experiments verify that photons can have intrinsic orbital angular momentum perpendicular to their propagation direction.

 
more » « less
Award ID(s):
2010511
NSF-PAR ID:
10224301
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
5
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We proposed the use of relative encircled power as a measure of focusing efficiency [Optica7,252(2020)OPTIC82334-253610.1364/OPTICA.388697]. The comment [Optica8,1009(2021)OPTIC82334-253610.1364/OPTICA.416017] has raised useful questions, which we address briefly here and provide some clarifications.

     
    more » « less
  2. This erratum corrects a typographic error that appears in Table 1 of our earlier paper [Optica8,539(2021)OPTIC82334-253610.1364/OPTICA.418984].

     
    more » « less
  3. We theoretically study the spectral properties of a pump–probe driven hybrid spinning optomechanical ring resonator optically coupled with a two-level quantum emitter (QE or qubit). Recently, we have shown [Opt. Express27,25515(2019)OPEXFF1094-408710.1364/OE.27.025515] that in the absence of the emitter, the coupled cavity version of this setup is not only capable of non-reciprocal light propagation but can also exhibit slow and fast light propagation. In this work, we investigate in what ways the presence of a single QE coupled with the optical whispering gallery modes of a spinning optomechanical resonator can alter the probe light non-reciprocity. Under the weak-excitation assumption and mean-field approximation, we find that the interplay between the rotational/spinning Sagnac effect and qubit coupling can lead to enhancement of both the optomechanically induced transparency peak value and the width of the transparency window due to the opening of a qubit-assisted backreflection channel. However, compared to the no-qubit case, we notice that such enhancement comes at the cost of degrading the group delay in probe light transmission by a factor of 1/2 for clockwise rotary directions. The target applications of these results can be in the areas of quantum circuitry and in non-reciprocal quantum communication protocols where QEs are a key component.

     
    more » « less
  4. In Parts I [Appl. Opt.58,6067(2019)APOPAI0003-693510.1364/AO.58.006067] and II [Appl. Opt.61,10049(2022)APOPAI0003-693510.1364/AO.474920], we used a coupled optoelectronic model to optimize a thin-film CIGS solar cell with a graded-bandgap photon-absorbing layer, periodically corrugated backreflector, and multilayered antireflection coatings. Bandgap grading of the CIGS photon-absorbing layer was continuous and either linear or nonlinear, in the thickness direction. Periodic corrugation and multilayered antireflection coatings were found to engender slight improvements in the efficiency. In contrast, bandgap grading of the CIGS photon-absorbing layer leads to significant enhancement of efficiency, especially when the grading is continuous and nonlinear. However, practical implementation of continuous nonlinear grading is challenging compared to piecewise-homogeneous grading. Hence, for this study, we investigated piecewise-homogeneous approximations of the optimal linear and nonlinear grading profiles, and found that an equivalent efficiency is achieved using piecewise-homogeneous grading. An efficiency of 30.15% is predicted with a three-layered piecewise-homogeneous CIGS photon-absorbing layer. The results will help experimentalists to implement optimal designs for highly efficient CIGS thin-film solar cells.

     
    more » « less
  5. Surface-enhanced Raman scattering (SERS) spectroscopy is a popular technique for detecting chemicals in small quantities. Rough metallic surfaces with nanofeatures are some of the most widespread and commercially successful substrates for efficient SERS measurements. A rough metallic surface creates a high-density random distribution of so-called “hot spots” with local optical field enhancement causing Raman signal to increase. In this Letter, we revisit the classic SERS experiment [Surf. Sci.158,229(1985)SUSCAS0039-602810.1016/0039-6028(85)90297-3] with rough metallic surfaces covered by a thin layer of copper phthalocyanine molecules. As a modification to the classic configuration, we apply an adaptive wavefront correction of a laser beam profile. As a result, we demonstrate an increase in brightness of local SERS hot spots and redistribution of Raman signal over the substrate area. We hypothesize that the improvement is due to optimal coupling of the shaped laser beam to the random plasmonic nanoantenna configurations. We show that the proposed adaptive-SERS modification is independent of the exact structure of the surface roughness and topography, works with many rough surfaces, and gives brighter Raman hot spots in comparison with conventional SERS measurements. We prove that the adaptive SERS is a powerful instrument for improving SERS sensitivity.

     
    more » « less