Abstract The first near IR fluorescent probe for the chemoselective and enantioselective recognition of arginine in aqueous solution is reported in this work. This probe, made of a 1,1’‐binaphthyl‐based chiral aldehyde unit and a rhodamine‐based near IR chromophore, in combination with La3+exhibits highly chemoselective as well as enantioselective fluorescent enhancement with arginine at λ=764 nm upon excitation at λ=690 nm. Little or no fluorescent response is observed toward the chirality miss‐matched arginine enantiomer or other common amino acids and their enantiomers. This probe also allows visual discrimination of the arginine enantiomers because of its fast and distinct color change upon interaction with the substrate.
more »
« less
Chemoselective and enantioselective fluorescent identification of specific amino acid enantiomers
The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective recognition of certain amino acid enantiomers. ( S )-1 shows greatly enhanced fluorescence in the presence of l -glutamic acid and l -aspartic acid, but produces no or little fluorescence response toward their opposite enantiomers and other amino acids. ( R )-4 in combination with Zn 2+ shows greatly enhanced fluorescence in the presence of l -serine. ( S )-6 is designed for the selective recognition of histidine. Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound ( S )-8 which shows chemoselective as well as enantioselective fluorescence enhancement with l -lysine in the presence of Zn 2+ in aqueous solution. The same micelles are also used to encapsulate several ( S )-1,1′-binaphthyl-based monoaldehydes ( S )-10 for the chemoselective and enantioselective fluorescence recognition of l -tryptophan in the presence of Zn 2+ in aqueous solution. These findings have demonstrated that highly selective fluorescence identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the designated locations of the 1,1′-binaphthyls. The binaphthyl core structure of these probes provides both a chirality source and highly tunable fluorescence properties. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further expanded to develop fluorescent probes for the specific identification of many amino acids of interest. This should facilitate the analysis of chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed.
more »
« less
- Award ID(s):
- 1855443
- PAR ID:
- 10428362
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 58
- Issue:
- 58
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 8038 to 8048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Synthetic chiral platforms can be a powerful platform for enantioselective interactions, especially when coupled with redox‐mediated electrochemical processes. While metallopolymers are versatile platforms for molecularly selective binding, their application for chiral applications is limited. In particular, the recognition and separation of biologically relevant chiral molecules can be key for biomanufacturing and diagnostics. Here, the design of chiral redox‐polymers enables electrochemically‐controlled enantioselective interactions, and supramolecular chirality is leveraged for enhancing recognition towards target enantiomers. Chiral redox‐metallopolymers are synthesized based on Ugi's amine‐inspired chiral monomers, and their enantioselective recognition toward ionic enantiomers such as tryptophan and naproxen is demonstrated, with higher enanhcement provided by the chiral redox‐polymer over the single‐site, chiral building bloack itelf. 2D nuclear magnetic resonance spectroscopy and solid‐state circular dichroism support the emergence of supramolecular chirality resulting from the intramolecular interaction between the ferrocene and the alkyl group in the backbone. The half potential shift of the redox‐polymers behaves linearly from 0% to 100%eel‐tryptophan to enable enantiomer quantification. Investigation on solvent polarity and pH effect reveal that the enantioselective mechanism is attributed to the subtle balance between hydrogen bonding and π–π interaction. This study highlights the potential of chiral redox‐metallopolymers as platforms for electrochemically‐modulated enantioselective interactions towards a range of amino acids and pharmaceutical carboxylates.more » « less
-
Abstract Three BINOL‐based unsymmetric chiral dialdehydes, (S)‐4, (S)‐5, and (S)‐6, each containing a salicylaldehyde moiety and anortho‐,meta‐ orpara‐substituted benzaldehyde unit, are synthesized and used to react with the enantiomers of an unsymmetric chiral diamine, lysine. These reactions represent the first examples of regioselective as well as enantioselective reactions of an unsymmetric chiral dialdehyde with an unsymmetric chiral diamine to generate unsymmetric chiral macrocycles. The addition of Zn2+can further enhance the selectivity for the macrocycle formation. Compounds (S)‐4and (S)‐5are found to exhibit chemoselective and enantioselective fluorescent recognition of lysine in the presence of Zn2+.more » « less
-
null (Ed.)A highly chemoselective as well as enantioselective fluorescent probe has been discovered for the recognition of the acidic amino acids, including glutamic acid and aspartic acid. This study has established a novel amino acid recognition mechanism by an aldehyde-based fluorescent probe.more » « less
-
Abstract In this study the chiral selectivity of l-undecyl-leucine (und-leu) for binapthyl derivatives was examined with the use of arginine and sodium counterions at pH’s ranging from 7 to 11. The objective of this project was to investigate whether a cationic amino acid, such as arginine would achieve enhanced chiral selectivity when utilized as the counterion in the place of sodium in micellar electrokinetic chromatography. The data indicate that und-leu has significantly improved chiral selectivity toward 1,1′-binaphthyl-2,2′-diyl hydrogenphosphate (BNP) enantiomers in the presence of arginine counterions in comparison to sodium and that, at least in the case of this study, the enantiomeric form of the arginine did not appear to play a role in the chiral selectivity. The maximum resolution (Rs) achieved for BNP when sodium was used as the counterion was ~0.6. However, when arginine was used as the counterion, the maximum resolution for BNP was ~4.1. This was an increase in resolution of ~ 7-fold. However, no significant difference was observed for the enantiomers of 1,1′-bi-2-naphthol. In order to learn more about why this might be the case, NMR studies were conducted to examine what role the counterion might play in enantiomeric recognition.more » « less
An official website of the United States government

