skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of signal-to-noise ratio of angle of polarization and degree of polarization
Recent advancements in nanofabrication technology has led to commercialization of single-chip polarization and color-polarization imaging sensors in the visible spectrum. Novel applications have arisen with the emergence of these sensors leading to questions about noise in the reconstructed polarization images. In this paper, we provide theoretical analysis for the input and output referred noise for the angle and degree of linear polarization information. We validated our theoretical model with experimental data collected from a division of focal plane polarization sensor. Our data indicates that the noise in the angle of polarization images depends on both incident light intensity and degree of linear polarization and is independent of the incident angle of polarization. However, noise in degree of linear polarization images depends on all three parameters: incident light intensity, angle and degree of linear polarization. This theoretical model can help guide the development of imaging setups to record optimal polarization information.  more » « less
Award ID(s):
1761561
PAR ID:
10224519
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
OSA Continuum
Volume:
4
Issue:
5
ISSN:
2578-7519
Format(s):
Medium: X Size: Article No. 1461
Size(s):
Article No. 1461
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with massM≈ 4 × 106M. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication. 
    more » « less
  2. Abstract This work investigates the polarization state of light diffracted from uncoated and gold‐coated InP nanowire photonic crystal arrays grown by selective area epitaxy. Experimental data and finite‐difference time‐domain simulations show that both the intensity and the ellipticity of the polarization state of the diffracted light beam can be controlled by the nanowire dimensions and gold coating, while the diffracted angle remains unchanged with respect to variations of these parameters. A nominally 10 nm‐thick gold film deposited around the nanowires enhances the diffraction intensity by plasmonic effects. These results demonstrate that the controlled conversion of incident linearly polarized light to circularly polarized or rotated linearly polarized diffracted light can find applications in photonic integrated circuits. The high sensitivity of the polarization state with respect to alterations of the nanowire dimension opens new prospects in the areas of semiconductor metrology and microchip inspection as well as for submicron particle detection. 
    more » « less
  3. Abstract Optical chiral imaging, as an important tool in chemical and biological analysis, has recently undergone a revolution with the development of chiral metamaterials and metasurfaces. However, the existing chiral imaging approaches based on metamaterials or metasurfaces can only display binary images with 1 bit pixel depth having either black or white pixels. Here, the unique chiral grayscale imaging based on plasmonic metasurfaces of stepped V‐shaped nanoapertures is reported with both high circular dichroism and large polarization linearity in transmission. By interlacing two subarrays of chiral nanoaperture enantiomers into one metasurface, two specific linear polarization profiles are independently generated in transmission under different incident handedness, which can then be converted into two distinct intensity profiles for demonstrating spin‐controlled grayscale images with 8 bit pixel depth. The proposed chiral grayscale imaging approach with subwavelength spatial resolution and high data density provides a versatile platform for many future applications in image encryption and decryption, dynamic display, advanced chiroptical sensing, and optical information processing. 
    more » « less
  4. Polarization imaging is highly sensitive to surface shape but is inherently ambiguous, as measurements depend only on the projected surface normal orientation. This shape-from-polarization algorithm introduces a method to recover unique surface normals from monocular Mueller images. We formulate the inverse problem as the estimation of the scattering geometry, enabling the extraction of unambiguous depth information from otherwise ambiguous normal data. Simulations show that while the initial ambiguous surface normal estimates are robust to noise, the subsequent depth recovery and disambiguation are more noise-sensitive. For simple object shapes, the method resolves ambiguities with mean angular errors below 10° at an SNR of 100. However, complex shapes require an SNR of 1,000 to achieve comparable accuracy. Notably, as the polarimetric capture system is simplified, the disambiguation performance approaches that of random selection for linear Stokes images. 
    more » « less
  5. In this paper, we present a polarimetric image restoration approach that aims to recover the Stokes parameters and the degree of linear polarization from their corresponding degraded counterparts. The Stokes parameters and the degree of linear polarization are affected due to the degradations present in partial occlusion or turbid media, such as scattering, attenuation, and turbid water. The polarimetric image restoration with corresponding Mueller matrix estimation is performed using polarization-informed deep learning and 3D Integral imaging. An unsupervised image-to-image translation (UNIT) framework is utilized to obtain clean Stokes parameters from the degraded ones. Additionally, a multi-output convolutional neural network (CNN) based branch is used to predict the Mueller matrix estimate along with an estimate of the corresponding residue. The degree of linear polarization with the Mueller matrix estimate generates information regarding the characteristics of the underlying transmission media and the object under consideration. The approach has been evaluated under different environmentally degraded conditions, such as various levels of turbidity and partial occlusion. The 3D integral imaging reduces the effects of degradations in a turbid medium. The performance comparison between 3D and 2D imaging in varying scene conditions is provided. Experimental results suggest that the proposed approach is promising under the scene degradations considered. To the best of our knowledge, this is the first report on polarization-informed deep learning in 3D imaging, which attempts to recover the polarimetric information along with the corresponding Mueller matrix estimate in a degraded environment. 
    more » « less