Liquid crystal elastomers (LCEs) are a class of stimuli‐responsive materials that have been intensively studied for applications including artificial muscles, shape morphing structures, and soft robotics due to their capability of large, programmable, and fully reversible actuation strains. To fully take advantage of LCEs, rapid, untethered, and programmable actuation methods are highly desirable. Here, a liquid crystal elastomer‐liquid metal (LCE‐LM) composite is reported, which enables ultrafast and programmable actuations by eddy current induction heating. The composite consists of LM sandwiched between two LCE layers printed via direct ink writing (DIW). When subjected to a high‐frequency alternating magnetic field, the composite is actuated in milliseconds. By moving the magnetic field, the eddy current is spatially controlled for selective actuation. Additionally, sequential actuation is achievable by programming the LM thickness distribution in a sample. With these capabilities, the LCE‐LM composite is further exploited for multimodal deformation of a pop‐up structure, on‐ground omnidirectional robotic motion, and in‐water targeted object manipulation and crawling.
- Award ID(s):
- 1752846
- PAR ID:
- 10224808
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Liquid crystalline elastomers (LCEs) are polymer networks exhibiting anisotropic liquid crystallinity while maintaining elastomeric properties. Owing to diverse polymeric forms and self-alignment molecular behaviors, LCEs have fascinated state-of-the-art efforts in various disciplines other than the traditional low-molar-mass display market. By patterning order to structures, LCEs demonstrate reversible high-speed and large-scale actuations in response to external stimuli, allowing for close integration with 4D printing and architectures of digital devices, which is scarcely observed in homogeneous soft polymer networks. In this review, we collect recent advances in 4D printing of LCEs, with emphases on synthesis and processing methods that enable microscopic changes in the molecular orientation and hence macroscopic changes in the properties of end-use objects. Promising potentials of printed complexes include fields of soft robotics, optics, and biomedical devices. Within this scope, we elucidate the relationships among external stimuli, tailorable morphologies in mesophases of liquid crystals, and programmable topological configurations of printed parts. Lastly, perspectives and potential challenges facing 4D printing of LCEs are discussed.more » « less
-
null (Ed.)Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.more » « less
-
Soft robots, with their agile locomotion and responsiveness to environment, have attracted great interest in recent years. Liquid crystal elastomers (LCEs), known for their reversible and anisotropic deformation, are promising candidates as embedded intelligent actuators in soft robots. So far, most studies on LCEs have focused on achieving complex deformation in thin films over centimeter‐scale areas with relatively small specific energy densities. Herein, using an extrusion process, meter‐long LCE composite filaments that are responsive to both infrared light and electrical fields are fabricated. In the composite filaments, a small quantity of cellulose nanocrystals (CNCs) is incorporated to facilitate the alignment of liquid crystal molecules along the long axis of the filament. Up to 2 wt% carbon nanotubes (CNTs) is introduced into a LCE matrix without aggregation, which in turn greatly improves the mechanical property of filaments and their actuation speed, where the Young's modulus along the long axis reaches 40 MPa, the electrothermal response time is within 10 s. The maximum work capacity is 38 J kg−1with 2 wt% CNT loading. Finally, shape transformation and locomotion in several soft robotics systems achieved by the dual‐responsive LCE/CNT composite filament actuators are demonstrated.
-
Abstract Liquid crystalline elastomers (LCEs) are stimuli‐responsive materials capable of undergoing large deformations. The thermomechanical response of LCEs is attributable to the coupling of polymer network properties and disruption of order between liquid crystalline mesogens. Complex deformations have been realized in LCEs by either programming the nematic director via surface‐enforced alignment or localized mechanical deformation in materials incorporating dynamic covalent chemistries. Here, the preparation of LCEs via thiol‐Michael addition reaction is reported that are amenable to surface‐enforced alignment. Afforded by the thiol‐Michael addition reaction, dynamic covalent bonds are uniquely incorporated in chemistries subject to surface‐enforce alignment. Accordingly, LCEs prepared with complex director profiles are able to be programmed and reprogrammed by (re)activating the dynamic covalent chemistry to realize distinctive shape transformations.