skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous Modification of Unstructured Environments with Found Material
The ability to autonomously modify their environment dramatically increases the capability of robots to operate in unstructured environments. We develop a specialized construction algorithm and robotic system that can autonomously build motion support structures with previously unseen objects. The approach is based on our prior work on adaptive ramp building algorithms, but it eliminates the assumption of having specialized building materials that simplify manipulation and planning for stability. Utilizing irregularly shaped stones makes the problem significantly more challenging since the outcome of individual placements is sensitive to details of contact geometry and friction, which are difficult to observe. To reuse the same high-level algorithm, we develop a new physics-based planner that explicitly considers the uncertainty produced by incomplete in-situ sensing and imprecision during pickup and placement. We demonstrate the approach on a robotic system that uses a newly developed gripper to reliably pick up stones with minimal additional sensors or complex grasp planning. The resulting system can build structures with more than 70 stones, which in turn provide traversable paths to previously inaccessible locations.  more » « less
Award ID(s):
1846340
PAR ID:
10224842
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
7798 to 7804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ishigami, G; Yoshida, K (Ed.)
    The ability to build structures with autonomous robots using only found, minimally processed stones would be immensely useful, especially in remote areas. Assembly planning for dry-stacked structures, however, is difficult since both the state and action spaces are continuous, and stability is strongly affected by complex friction and contact constraints. We propose a planning algorithm for such assemblies that uses a physics simulator to find a small set of feasible poses and then evaluates them using a hierarchical filter. We carefully designed the heuristics for the filters to match our goal of building stable, free-standing walls. These plans are then executed open-loop with a robotic arm equipped with a wrist RGB-D camera. Experimental results show that the proposed planning algorithm can significantly improve the state of the art in robotic dry stacking. 
    more » « less
  2. null (Ed.)
    Autonomous navigation of steel bridge inspection robots are essential for proper maintenance. Majority of existing robotic solutions for bridge inspection require human intervention to assist in the control and navigation. In this paper, a control system framework has been proposed for a previously designed ARA robot [1], which facilitates autonomous real-time navigation and minimizes human involvement. The mechanical design and control framework of ARA robot enables two different configurations, namely the mobile and inch-worm transformation. In addition, a switching control was developed with 3D point clouds of steel surfaces as the input which allows the robot to switch between mobile and inch-worm transformation. The surface availability algorithm (considers plane, area and height) of the switching control enables the robot to perform inch-worm jumps autonomously. The mobile transformation allows the robot to move on continuous steel surfaces and perform visual inspection of steel bridge structures. Practical experiments on actual steel bridge structures highlight the effective performance of ARA robot with the proposed control framework for autonomous navigation during visual inspection of steel bridges. 
    more » « less
  3. Ideally, we would place a robot in a real-world environment and leave it there improving on its own by gathering more experience autonomously. However, algorithms for autonomous robotic learning have been challenging to realize in the real world. While this has often been attributed to the challenge of sample complexity, even sample-efficient techniques are hampered by two major challenges - the difficulty of providing well "shaped" rewards, and the difficulty of continual reset-free training. In this work, we describe a system for real-world reinforcement learning that enables agents to show continual improvement by training directly in the real world without requiring painstaking effort to hand-design reward functions or reset mechanisms. Our system leverages occasional non-expert human-in-the-loop feedback from remote users to learn informative distance functions to guide exploration while leveraging a simple self-supervised learning algorithm for goal-directed policy learning. We show that in the absence of resets, it is particularly important to account for the current "reachability" of the exploration policy when deciding which regions of the space to explore. Based on this insight, we instantiate a practical learning system - GEAR, which enables robots to simply be placed in real-world environments and left to train autonomously without interruption. The system streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans in the form of binary comparative feedback. We evaluate this system on a suite of robotic tasks in simulation and demonstrate its effectiveness at learning behaviors both in simulation and the real world. 
    more » « less
  4. In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in pick and place tasks, which are found across a range of application areas. The proposed system uses Large Language Model Meta AI (Llama3) to interpret voice commands by extracting essential details through parsing and decoding the commands into sequential actions. These actions are sent to DRL-VO, a learning-based control policy built on the Robot Operating System (ROS) that allows a robot to autonomously navigate through social spaces with static infrastructure and crowds of people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors. 
    more » « less
  5. Rectilinear forms of snake-like robotic locomotion are anticipated to be an advantage in obstacle-strewn scenarios characterizing urban disaster zones, subterranean collapses, and other natural environments. The elongated, laterally narrow footprint associated with these motion strategies is well suited to traversal of confined spaces and narrow pathways. Navigation and path planning in the absence of global sensing, however, remains a pivotal challenge to be addressed prior to practical deployment of these robotic mechanisms. Several challenges related to visual processing and localization need to be resolved to to enable navigation. As a first pass in this direction, we equip a wireless, monocular color camera to the head of a robotic snake. Visiual odometry and mapping from ORB-SLAM permits self-localization in planar, obstacle strewn environments. Ground plane traversability segmentation in conjunction with perception-space collision detection permits path planning for navigation. A previously presented dynamical reduction of rectilinear snake locomotion to a non-holonomic kinematic vehicle informs both SLAM and planning. The simplified motion model is then applied to track planned trajectories through an obstacle configuration. This navigational framework enables a snake-like robotic platform to autonomously navigate and traverse unknown scenarios with only monocular vision. 
    more » « less