Abstract Dry stacking with found, minimally processed rocks is a useful capability when it comes to autonomous construction. However, it is a difficult planning problem since both the state and action space are continuous, and structural stability is strongly affected by complex friction and contact constraints. We propose an algorithmic approach for autonomous construction from a collection of irregularly shaped objects. The structure planning is calculated in simulation by first considering geometric and physical constraints to find a small set of feasible actions and then refined by using a hierarchical filter based on heuristics. These plans are then executed open-loop with a robotic arm equipped with a wrist RGB-D camera. Experimental results show that the proposed planning algorithm can significantly improve the state of the art robotics dry-stacking techniques.
more »
« less
Planning for Robotic Dry Stacking with Irregular Stones
The ability to build structures with autonomous robots using only found, minimally processed stones would be immensely useful, especially in remote areas. Assembly planning for dry-stacked structures, however, is difficult since both the state and action spaces are continuous, and stability is strongly affected by complex friction and contact constraints. We propose a planning algorithm for such assemblies that uses a physics simulator to find a small set of feasible poses and then evaluates them using a hierarchical filter. We carefully designed the heuristics for the filters to match our goal of building stable, free-standing walls. These plans are then executed open-loop with a robotic arm equipped with a wrist RGB-D camera. Experimental results show that the proposed planning algorithm can significantly improve the state of the art in robotic dry stacking.
more »
« less
- PAR ID:
- 10321607
- Editor(s):
- Ishigami, G; Yoshida, K
- Date Published:
- Journal Name:
- Field and Service Robotics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Path planning is a fundamental and critical task in many robotic applications. For energy‐constrained robot platforms, path planning solutions are desired with minimum time arrivals and minimal energy consumption. Uncertain environments, such as wind conditions, pose challenges to the design of effective minimum time‐energy path planning solutions. In this article, we develop a minimum time‐energy path planning solution in continuous state and control input spaces using integral reinforcement learning (IRL). To provide a baseline solution for the performance evaluation of the proposed solution, we first develop a theoretical analysis for the minimum time‐energy path planning problem in a known environment using the Pontryagin's minimum principle. We then provide an online adaptive solution in an unknown environment using IRL. This is done through transforming the minimum time‐energy problem to an approximate minimum time‐energy problem and then developing an IRL‐based optimal control strategy. Convergence of the IRL‐based optimal control strategy is proven. Simulation studies are developed to compare the theoretical analysis and the proposed IRL‐based algorithm.more » « less
-
Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake with a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios.more » « less
-
null (Ed.)The ability to autonomously modify their environment dramatically increases the capability of robots to operate in unstructured environments. We develop a specialized construction algorithm and robotic system that can autonomously build motion support structures with previously unseen objects. The approach is based on our prior work on adaptive ramp building algorithms, but it eliminates the assumption of having specialized building materials that simplify manipulation and planning for stability. Utilizing irregularly shaped stones makes the problem significantly more challenging since the outcome of individual placements is sensitive to details of contact geometry and friction, which are difficult to observe. To reuse the same high-level algorithm, we develop a new physics-based planner that explicitly considers the uncertainty produced by incomplete in-situ sensing and imprecision during pickup and placement. We demonstrate the approach on a robotic system that uses a newly developed gripper to reliably pick up stones with minimal additional sensors or complex grasp planning. The resulting system can build structures with more than 70 stones, which in turn provide traversable paths to previously inaccessible locations.more » « less
-
Efficient planning in continuous state and action spaces is fundamentally hard, even when the transition model is deterministic and known. One way to alleviate this challenge is to perform bilevel planning with abstractions, where a highlevel search for abstract plans is used to guide planning in the original transition space. Previous work has shown that when state abstractions in the form of symbolic predicates are hand-designed, operators and samplers for bilevel planning can be learned from demonstrations. In this work, we propose an algorithm for learning predicates from demonstrations, eliminating the need for manually specified state abstractions. Our key idea is to learn predicates by optimizing a surrogate objective that is tractable but faithful to our real efficient-planning objective. We use this surrogate objective in a hill-climbing search over predicate sets drawn from a grammar. Experimentally, we show across four robotic planning environments that our learned abstractions are able to quickly solve held-out tasks, outperforming six baselines.more » « less
An official website of the United States government

