skip to main content


Title: Culturally Responsive Practices: Insights from a High‐Quality Math Afterschool Program Serving Underprivileged Latinx Youth
High-quality afterschool programs (ASPs) are opportunities to diversify the ways that Latinx youth from economically underprivileged communities experience STEM learning. Utilizing qualitative methods, based on the experiences and perspectives of low-income Latinx middle school participants of a math enrichment ASP in Southern California, we identified four culturally responsive practices: (1) the promotion of an inclusive, safe, and respectful program climate, (2) engaging in personal conversations, (3) facilitating opportunities for mutual and math learning across diverse cultures and perspectives, and (4) the promotion of math and a range of social-emotional skills across contexts. These practices helped youth feel more connected to the program, their peers, and program staff (college mentors); provided a platform for youth voice and contribution to the processes of teaching and learning; facilitated opportunities for skill development and practice across the different contexts of youth’s lives; interrelated with Latinx cultural values; and helped to promote youth’s engagement and math learning. Importantly, youth’s relationships with their mentors was a significant aspect of their experiences and perceptions of these practices. We argue that culturally responsive practices are necessary to achieve high-quality programs and provide specific implications for how ASPs can implement them in the design and implementation of their programs.  more » « less
Award ID(s):
1809208
NSF-PAR ID:
10224938
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
American Journal of Community Psychology
ISSN:
0091-0562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Opportunities for collaborative learning reflect positive peer processes that have strong implications for adolescents’ developmental experiences in afterschool programs (ASPs). However, collaborative learning, which involves considering multiple viewpoints and coordinating actions with peers to accomplish a shared goal, is often difficult for adolescents to navigate. Utilizing qualitative methods, the purpose of this study was to identify ASP mentoring strategies that promote collaborative learning among adolescent participants. Based on the experiences and perspectives of college student mentors who serve as frontline staff of a math enrichment ASP for Latino/a middle school students, we identified four mentoring strategies that promote collaborative learning: (1) nurturing personal connections with and among youth, (2) establishing positive group norms, (3) strategically splitting groups and work, and (4) modeling collaborative behaviors. These strategies reflect best practices that frontline staff can utilize to promote adolescents’ collaborative learning, skill development, and engagement in ASPs. Practical implications and directions for future research are discussed. 
    more » « less
  2. null (Ed.)
    HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation (NSF) that joins two successful programs. Mentor-Connect mentors 2-year college faculty to develop competitive proposals for the NSF Advanced Technological Education (ATE) Program, and KickStarter facilitates strategic STEM assessment and planning to drive competitive STEM proposal development at 2-year Hispanic Serving Institutions (HSIs). The goal of HSI ATE Hub is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to elevate 2-year HSIs as drivers of their community’s economic success via technician education. Data sets from three annual HSI ATE Hub Cohorts, four prior KickStarter Cohorts, and nine Mentor-Connect Cohorts have been aggregated to assess the following research questions about 2-year HSIs: Are there unique opportunities/barriers/challenges related to STEM program development and grant-writing endeavors for advanced technological education? How do we build capacity to pursue the opportunities and address the barriers/challenges? How do mentoring efforts/styles related to STEM program development and grant-writing need to differ for HSI faculty? What types of resources are relevant to the HSI ATE Community? This third paper in a series will report new data and incremental results from Year 3 of the HSI ATE Hub and a summary of results from the prior two years [1] [2]. These results include interactions with the HSI ATE community through intentional, expanded engagement to enhance learning from Latinx Advisory Council members and training webinars to develop educators’ acumen of culturally responsive instruction and high impact practices. Feedback from interviews and surveys with faculty at 2-year HSIs in HSI ATE Hub Cohorts 1-3 will be discussed to address research questions 1, 2, and 3. Evolved staging of resources relevant to the HSI ATE Community and related research directions for extending the project will address research question 4. 
    more » « less
  3. null (Ed.)
    HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation (NSF) that joins two successful programs. Mentor-Connect mentors 2-year college faculty to develop competitive proposals for the NSF Advanced Technological Education (ATE) Program, and KickStarter facilitates strategic STEM assessment and planning to drive competitive STEM proposal development at 2-year Hispanic Serving Institutions (HSIs). The goal of HSI ATE Hub is to build capacity and leadership at 2-year HSIs for developing competitive ATE proposals to elevate 2-year HSIs as drivers of their community’s economic success via technician education. Data sets from three annual HSI ATE Hub Cohorts, four prior KickStarter Cohorts, and nine Mentor-Connect Cohorts have been aggregated to assess the following research questions about 2-year HSIs: Are there unique opportunities/barriers/challenges related to STEM program development and grant-writing endeavors for advanced technological education? How do we build capacity to pursue the opportunities and address the barriers/challenges? How do mentoring efforts/styles related to STEM program development and grant-writing need to differ for HSI faculty? What types of resources are relevant to the HSI ATE Community? This third paper in a series will report new data and incremental results from Year 3 of the HSI ATE Hub and a summary of results from the prior two years [1] [2]. These results include interactions with the HSI ATE community through intentional, expanded engagement to enhance learning from Latinx Advisory Council members and training webinars to develop educators’ acumen of culturally responsive instruction and high impact practices. Feedback from interviews and surveys with faculty at 2-year HSIs in HSI ATE Hub Cohorts 1-3 will be discussed to address research questions 1, 2, and 3. Evolved staging of resources relevant to the HSI ATE Community and related research directions for extending the project will address research question 4. 
    more » « less
  4. Engineering Explorations are curriculum modules that engage children across contexts in learning about science and engineering. We used them to leverage multiple education sectors (K–12 schools, museums, higher education, and afterschool programs) across a community to provide engineering learning experiences for youth, while increasing local teachers’ capacity to deliver high-quality engineering learning opportunities that align with school standards. Focusing on multiple partners that serve youth in the same community provides opportunities for long-term collaborations and programs developed in response to local needs. In a significant shift from earlier sets of standards, the Next Generation Science Standards include engineering design, with the goal of providing students with a foundation “to better engage in and aspire to solve the major societal and environmental challenges they will face in decades ahead” (NGSS Lead States 2013, Appendix I). Including engineering in K–12 standards is a positive step forward in introducing students to engineering; however, K–12 teachers are not prepared to facilitate high-quality engineering activities. Research has consistently shown that elementary teachers are not confident in teaching science, especially physical science, and generally have little knowledge of engineering (Trygstad 2013). K–12 teachers, therefore, will need support. Our goal was to create a program that took advantage of the varied resources across a STEM (science, technology, engineering, and math) education ecosystem to support engineering instruction for youth across multiple contexts, while building the capacity of educators and meeting the needs of each organization. Specifically, we developed mutually reinforcing classroom and field trip activities to improve student learning and a curriculum to improve teacher learning. This challenging task required expertise in school-based standards, engineering education, informal education, teacher professional development, and classroom and museum contexts. 
    more » « less
  5. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)
    Much of the ISEE Professional Development Program (PDP)’s long-term value arises from participants transferring teaching approaches they develop in the course of designing and facilitating a PDP inquiry activity to other contexts throughout their careers. PDP participants encounter frameworks such as the inquiry framework and the equity and inclusion focus areas, and are encouraged explicitly to become informed consumers of further scholarship on teaching and learning. Many participants resonate especially with the PDP’s emphasis on equity and inclusion in STEM teaching, and meld lessons from the PDP with their lived experiences as well as other scholarship on equity-minded or culturally responsive educational practices. Our panel shares four perspectives on extending lessons from the PDP to new contexts: mentoring students and developing interactive lessons in molecular biology, designing astronomy activities from a culturally relevant and culturally responsive standpoint, incorporating inquiry activities into a large astronomy lecture course, and helping academic programs across a university adopt equity-minded practices for assessing learning outcomes. 
    more » « less