Solid-state defect qubit systems with spin-photon interfaces show great promise for quantum information and metrology applications. Photon collection efficiency, however, presents a major challenge for defect qubits in high refractive index host materials. Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface including spectral response, photon polarization, and collection mode. Further, the design process can incorporate additional constraints, such as fabrication tolerance and material processing limitations. Here, we design and demonstrate a compact hybrid gallium phosphide on diamond inverse-design planar dielectric structure coupled to single near-surface nitrogen-vacancy centers formed by implantation and annealing. We observe up to a 14-fold broadband enhancement in photon extraction efficiency, in close agreement with simulations. We expect that such inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, efficient sensing, and heralded entanglement schemes.
Despite the recognition of two-dimensional (2D) systems as emerging and scalable host materials of single-photon emitters or spin qubits, the uncontrolled, and undetermined chemical nature of these quantum defects has been a roadblock to further development. Leveraging the design of extrinsic defects can circumvent these persistent issues and provide an ultimate solution. Here, we established a complete theoretical framework to accurately and systematically design quantum defects in wide-bandgap 2D systems. With this approach, essential static and dynamical properties are equally considered for spin qubit discovery. In particular, many-body interactions such as defect–exciton couplings are vital for describing excited state properties of defects in ultrathin 2D systems. Meanwhile, nonradiative processes such as phonon-assisted decay and intersystem crossing rates require careful evaluation, which competes together with radiative processes. From a thorough screening of defects based on first-principles calculations, we identify promising single-photon emitters such as SiVVand spin qubits such as TiVVand MoVVin hexagonal boron nitride. This work provided a complete first-principles theoretical framework for defect design in 2D materials.
more » « less- PAR ID:
- 10224986
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Point defects in hexagonal boron nitride (hBN) have attracted growing attention as bright single-photon emitters. However, understanding of their atomic structure and radiative properties remains incomplete. Here we study the excited states and radiative lifetimes of over 20 native defects and carbon or oxygen impurities in hBN using ab initio density functional theory and GW plus Bethe-Salpeter equation calculations, generating a large data set of their emission energy, polarization and lifetime. We find a wide variability across quantum emitters, with exciton energies ranging from 0.3 to 4 eV and radiative lifetimes from ns to ms for different defect structures. Through a Bayesian statistical analysis, we identify various high-likelihood charge-neutral defect emitters, among which the native VNNBdefect is predicted to possess emission energy and radiative lifetime in agreement with experiments. Our work advances the microscopic understanding of hBN single-photon emitters and introduces a computational framework to characterize and identify quantum emitters in 2D materials.
-
The integration of solid-state single-photon sources with foundry-compatible photonic platforms is crucial for practical and scalable quantum photonic applications. This study explores aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics and the ability to host defect-center related single-photon emitters. We have conducted a comprehensive analysis of the creation of single-photon emitters in AlN, utilizing heavy ion irradiation and thermal annealing techniques. Subsequently, we have performed a detailed analysis of their photophysical properties. Guided by theoretical predictions, we assessed the potential of Zirconium (Zr) ions to create optically addressable spin defects and employed Krypton (Kr) ions as an alternative to target lattice defects without inducing chemical doping effects. With a 532 nm excitation wavelength, we found that single-photon emitters induced by ion irradiation were primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions. The density of these emitters increased with ion fluence, and there was an optimal value that resulted in a high density of emitters with low AlN background fluorescence. Under a shorter excitation wavelength of 405 nm, Zr-irradiated AlN exhibited isolated point-like emitters with fluorescence in the spectral range theoretically predicted for spin-defects. However, similar defects emitting in the same spectral range were also observed in AlN irradiated with Kr ions as well as in as-grown AlN with intrinsic defects. This result is supportive of the earlier theoretical predictions, but at the same time highlights the difficulties in identifying the sought-after quantum emitters with interesting properties related to the incorporation of Zr ions into the AlN lattice by fluorescence alone. The results of this study largely contribute to the field of creating quantum emitters in AlN by ion irradiation and direct future studies emphasizing the need for spatially localized Zr implantation and testing for specific spin properties.
-
Abstract Strong light–matter interactions in two-dimensional layered materials (2D materials) have attracted the interest of researchers from interdisciplinary fields for more than a decade now. A unique phenomenon in some 2D materials is their large exciton binding energies (BEs), increasing the likelihood of exciton survival at room temperature. It is this large BE that mediates the intense light–matter interactions of many of the 2D materials, particularly in their monolayer limit, where the interplay of excitonic phenomena poses a wealth of opportunities for high-performance optoelectronics and quantum photonics. Within quantum photonics, quantum information science (QIS) is growing rapidly, where photons are a promising platform for information processing due to their low-noise properties, excellent modal control, and long-distance propagation. A central element for QIS applications is a single photon emitter (SPE) source, where an ideal on-demand SPE emits exactly one photon at a time into a given spatiotemporal mode. Recently, 2D materials have shown practical appeal for QIS which is directly driven from their unique layered crystalline structure. This structural attribute of 2D materials facilitates their integration with optical elements more easily than the SPEs in conventional three-dimensional solid state materials, such as diamond and SiC. In this review article, we will discuss recent advances made with 2D materials towards their use as quantum emitters, where the SPE emission properties maybe modulated deterministically. The use of unique scanning tunneling microscopy tools for the
in-situ generation and characterization of defects is presented, along with theoretical first-principles frameworks and machine learning approaches to model the structure-property relationship of exciton–defect interactions within the lattice towards SPEs. Given the rapid progress made in this area, the SPEs in 2D materials are emerging as promising sources of nonclassical light emitters, well-poised to advance quantum photonics in the future. -
Abstract Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.