This content will become publicly available on May 27, 2025
Silicon-based quantum emitters are candidates for large-scale qubit integration due to their single-photon emission properties and potential for spin-photon interfaces with long spin coherence times. Here, we demonstrate local writing and erasing of selected light-emitting defects using femtosecond laser pulses in combination with hydrogen-based defect activation and passivation at a single center level. By choosing forming gas (N2/H2) during thermal annealing of carbon-implanted silicon, we can select the formation of a series of hydrogen and carbon-related quantum emitters, including T and Cicenters while passivating the more common G-centers. The Cicenter is a telecom S-band emitter with promising optical and spin properties that consists of a single interstitial carbon atom in the silicon lattice. Density functional theory calculations show that the Cicenter brightness is enhanced by several orders of magnitude in the presence of hydrogen. Fs-laser pulses locally affect the passivation or activation of quantum emitters with hydrogen for programmable formation of selected quantum emitters.
more » « less- Award ID(s):
- 2137645
- PAR ID:
- 10547505
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Short-pulse ion beams have been developed in recent years and now enable applications in materials science. A tunable flux of selected ions delivered in pulses of a few nanoseconds can affect the balance of defect formation and dynamic annealing in materials. We report results from color center formation in silicon with pulses of 900 keV protons. G-centers in silicon are near-infrared photon emitters with emerging applications as single-photon sources and for spin-photon qubit integration. G-centers consist of a pair of substitutional carbon atoms and one silicon interstitial atom and are often formed by carbon ion implantation and thermal annealing. Here, we report on G-center formation with proton pulses in silicon samples that already contained carbon, without carbon ion implantation or thermal annealing. The number of G-centers formed per proton increased when we increased the pulse intensity from 6.9 × 109 to 7.9 × 1010 protons/cm2/pulse, demonstrating a flux effect on G-center formation efficiency. We observe a G-center ensemble linewidth of 0.1 nm (full width half maximum), narrower than previously reported. Pulsed ion beams can extend the parameter range available for fundamental studies of radiation-induced defects and the formation of color centers for spin-photon qubit applications.more » « less
-
Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV−) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties, including narrow-linewidth emission and long spin coherence times. SnV− centers need to be incorporated in optical waveguides for efficient onchip routing of the photons they generate. However, such integration has yet to be realized. In this Letter, we demonstrate the coupling of SnV− centers to a nanophotonic waveguide. We realize this device by leveraging our recently developed shallow ion implantation and growth method for the generation of high-quality SnV− centers and the advanced quasi-isotropic diamond fabrication technique. We confirm the compatibility and robustness of these techniques through successful coupling of narrow-linewidth SnV− centers (as narrow as 36 ± 2 MHz) to the diamond waveguide. Furthermore, we investigate the stability of waveguide-coupled SnV− centers under resonant excitation. Our results are an important step toward SnV−-based on-chip spin-photon interfaces, single-photon nonlinearity, and photon-mediated spin interactions.more » « less
-
Single-photon emitters are essential in enabling several emerging applications in quantum information technology, quantum sensing, and quantum communication. Scalable photonic platforms capable of hosting intrinsic or embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates. Photophysical analysis reveals bright (>10 5 counts/s), stable, linearly polarized, and pure quantum emitters in SiN films with a second-order autocorrelation function value at zero time delay g (2) (0) below 0.2 at room temperature. We suggest that the emission originates from a specific defect center in SiN because of the narrow wavelength distribution of the observed luminescence peak. Single-photon emitters in SiN have the potential to enable direct, scalable, and low-loss integration of quantum light sources with a well-established photonic on-chip platform.more » « less
-
Abstract Diamond color centers have been widely studied in the field of quantum optics. The negatively charged silicon vacancy (SiV − ) center exhibits a narrow emission linewidth at the wavelength of 738 nm, a high Debye–Waller factor, and unique spin properties, making it a promising emitter for quantum information technologies, biological imaging, and sensing. In particular, nanodiamond (ND)-based SiV − centers can be heterogeneously integrated with plasmonic and photonic nanostructures and serve as in vivo biomarkers and intracellular thermometers. Out of all methods to produce NDs with SiV − centers, ion implantation offers the unique potential to create controllable numbers of color centers in preselected individual NDs. However, the formation of single color centers in NDs with this technique has not been realized. We report the creation of single SiV − centers featuring stable high-purity single-photon emission through Si implantation into NDs with an average size of ∼20 nm. We observe room temperature emission, with zero-phonon line wavelengths in the range of 730–800 nm and linewidths below 10 nm. Our results offer new opportunities for the controlled production of group-IV diamond color centers with applications in quantum photonics, sensing, and biomedicine.more » « less
-
Color centers have emerged as a leading qubit candidate for realizing hybrid spin-photon quantum information technology. One major limitation of the platform, however, is that the characteristics of individual color centers are often strain dependent. As an illustrative case, the silicon-vacancy center in diamond typically requires millikelvin temperatures in order to achieve long coherence properties, but strained silicon-vacancy centers have been shown to operate at temperatures beyond 1 K without phonon-mediated decoherence. In this work, we combine high-stress silicon-nitride thin films with diamond nanostructures to reproducibly create statically strained silicon-vacancy color centers (mean ground state splitting of 608 GHz) with strain magnitudes of ∼4×10−4. Based on modeling, this strain should be sufficient to allow for operation of a majority silicon-vacancy centers within the measured sample at elevated temperatures (1.5 K) without any degradation of their spin properties. This method offers a scalable approach to fabricate high-temperature operation quantum memories. Beyond silicon-vacancy centers, this method is sufficiently general that it can be easily extended to other platforms as well.